Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new look at differentiation of the Earth from melting experiments on the Allende meteorite

Abstract

CARBONACEOUS chondrites contain approximately solar abundances of the non-volatile elements1, but are much more FeO-rich2 than upper mantle peridotites3 or hypothetical 'chondritic' mantle compositions4,5. If the Earth accreted from unfractionated, primitive meteoritic debris similar to the carbonaceous chondrites, how then did it become a fractionated, layered body with a crust, mantle and core? Here I report the results of high-pressure melting experiments on the Allende CV3 carbonaceous chondrite, which address this question and provide a new look at the Earth's earliest stage of differentiation. Multi-anvil experiments at 24, 26 and 26.5 GPa show that FeO-rich magnesiowüstite is an abundant crystallizing phase at temperatures near the Allende silicate liquidus. If a chondritic Earth experienced a high-temperature molten stage, then during cooling and crystallization, FeO-rich magnesiowüstite could be segregated to the deepest levels of the Earth's interior. Magnesiowüstite fractionation may thus have depleted the initial FeO content of the primitive chondritic mantle and contributed to the formation and growth of the Earth's core.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anders, E. & Grevesse, N. Geochim. cosmochim. Acta 53, 197–124 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Jarosewich, E., Clarke, R. S. Jr & Barrows, J. N. (eds) Smithsonian Centr. Earth Sci. 27 (1987).

  3. Jagoutz, E. et al. Proc. lunar planet. Sci. Conf. 10, 2031–2050 (1979).

    ADS  Google Scholar 

  4. Anderson, D. L. & Bass, J. D. Nature 320, 321–328 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Ohtani, E., Kato, T. & Sawamoto, H. Nature 322, 352–353 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Williams, Q. Geophys. Res. Lett. 17, 635–638 (1990).

    Article  ADS  Google Scholar 

  7. Jeanloz, R. & Thompson, A. B. Rev. Geophys. Space Phys. 21, 51–74 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Urakawa, S., Kato, M. & Kumazawa, M. in High-Pressure Research in Mineral Physics (eds Manghnani, M. H. & Syono, Y.) 95–111 (Terra Scientific, Tokyo, 1987).

    Google Scholar 

  9. Jeanloz, R. & Ahrens, T. J. Geophys. J. R. astr. Soc. 62, 505–528 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Knittle, E. & Jeanloz, R. Geophys. Res. Lett. 8, 1541–1544 (1986).

    Article  ADS  Google Scholar 

  11. Ohtani, E., Ringwood, A. E. & Hibberson, W. Earth planet. Sci. Lett. 71, 94–103 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Kato, T. & Ringwood, A. E. Phys. Chem. Miner. 16, 524–538 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Knittle, E. & Jeanloz, R. Geophys. Res. Lett. 16, 609–612 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Uto, E. & Takahashi, E. Nature 328, 514–517 (1987).

    Article  ADS  Google Scholar 

  15. Ohtani, E. & Sawamoto, H. Geophys. Res. Lett. 14, 733–736 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Jeanloz, R. & Knittle, E. Phil. Trans. R. Soc. A328, 377–389 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Agee, C. B. & Walker, D. J. geophys. Res. 93, 3437–3449 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Agee, C. B. Eos 70, 1418 (abstr.) (1989).

    Google Scholar 

  19. Rigden, S. M., Ahrens, T. J. & Stolper, E. M. Science 226, 1071–1074 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Rigden, S. M., Ahrens, T. J. & Stolper, E. M. J. geophys. Res. 94, 9508–9522 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Miller, G. H., Stolper, E. M. & Ahrens, T. J. J. geophys. Res. (in the press).

  22. Birch, F. J. geophys. Res. 69, 4377–4388 (1964).

    Article  ADS  CAS  Google Scholar 

  23. Ringwood, A. E. Origin of the Earth and the Moon (Springer-Verlag, New York, 1979).

    Book  Google Scholar 

  24. Wanke, H., Dreibus, G. & Jagoutz, E. in Archean Geochemistry (eds Kröner, A., Hanson, G. N. & Goodwin, A. W.) 1–24 (Springer-Verlag, Berlin, 1984).

    Book  Google Scholar 

  25. O'Neill, H. St C. Geochim. cosmochim. Acta (in the press).

  26. Agee, C. B. & Walker, D. Earth planet. Sci. Lett. 90, 144–156 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Jephcoat, A. & Olson, P. Nature 325, 332–335 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Sawamoto, H. in High-Pressure Research in Mineral Physics (eds Manghnani, M. H. & Syono, Y.), 209–219 (Terra Scientific, Tokyo, 1987).

    Google Scholar 

  29. Ito, E. & Takahashi, E. J. geophys. Res. 94, 10637–10646 (1989).

    Article  ADS  Google Scholar 

  30. Katsura, T. & Ito, E. Institute for Study of the Earth's Interior, Tech. Rep. 16, Ser. A (1988).

  31. Benz, W., Cameron, A. G. W. & Melosh, H. J. Icarus 81, (1989).

    Article  ADS  CAS  Google Scholar 

  32. O'Hara, M. J., Saunders, M. J. & Mercy, E. L. P. Phys. Chem. Earth 9, 571–604 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agee, C. A new look at differentiation of the Earth from melting experiments on the Allende meteorite. Nature 346, 834–837 (1990). https://doi.org/10.1038/346834a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346834a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing