Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid kinetics of second messenger formation in olfactory transduction

Abstract

OLFACTORY transduction is thought to be mediated by a membrane-bound receptor protein initiating a multistep reaction cascade which ultimately leads to a depolarizing generator current1,2. There is considerable evidence for the involvement of adenylate cyclase in vertebrate olfactory transduction3–6, and some data indicate that phospholipase C may have a central role in insect olfaction7. However, one must show that odorants not only stimulate enzyme activity but also induce changes in concentrations of relevant second messengers. One important criterion for a candidate second messenger of chemo-electrical transduction is that its formation must precede the onset of the odorant-induced membrane permeability changes which proceed on a subsecond time-scale8. Here we report an odorant-induced, transient accumulation of cyclic AMP in isolated olfactory cilia from rats, and the generation of inositol trisphosphate in antennal preparations from insects, both of which show subsecond time courses that are sufficiently rapid to mediate the odorant-regulated permeability of olfactory receptor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lancet, D. A. Rev. Neurosci. 9, 329–355 (1986).

    Article  CAS  Google Scholar 

  2. Snyder, S. H., Sklar, P. B. & Pevsner, J. J. biol. Chem. 263, 13971–13974 (1988).

    CAS  PubMed  Google Scholar 

  3. Pace, U., Hansky, E., Salomon, Y. & Lancet, D. Nature 316, 255–258 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Sklar, P. B., Anholt, R. H. & Snyder, S. H. J. biol. Chem. 261, 15538–15543 (1986).

    CAS  PubMed  Google Scholar 

  5. Nakamura, T. & Gold, G. H. Nature 325, 442–444 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Lowe, G., Nakamura, T. & Gold, G. H. Proc. natn. Acad. Sci. U.S.A. 86, 5641–5645 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Boekhoff, I., Strotmann, J., Raming, K., Tareilus, E. & Breer, H. Cell. Signal. 2, 49–56 (1990).

    Article  CAS  Google Scholar 

  8. Firestein, S. & Werblin, F. Science 244, 79–82 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Sass, H., J. comp. Physiol. 152, 309–317 (1983).

    Article  CAS  Google Scholar 

  10. Eckstein, P. D., Cassel, D., Levkovitz, H., Lowe, M. & Selinger, Z. J. biol. Chem. 254, 9829–9836 (1979).

    CAS  PubMed  Google Scholar 

  11. Jones, D. T. & Reed, R. Science 244, 790–795 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Kaissling, K. E. A. Rev. Neurosci. 9, 121–145 (1986).

    Article  CAS  Google Scholar 

  13. Blazynski, C. & Cohen, A. I. J. biol. Chem. 261, 14142–14147 (1986).

    CAS  PubMed  Google Scholar 

  14. Cote, R. H., Nicol, S. A., Burke, S. A. & Bownds, M. D. J. biol. Chem. 261, 12965–12975 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fesenko, E. E., Kolesnikow, S. S. & Lubarsky, A. L. Nature 313, 310–313 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Anholt, R. H., Aebi, U. & Snyder, S. H. J. Neurosci. 6, 1962–1969 (1987).

    Article  Google Scholar 

  17. Steiner, A. L., Pagliara, A. S., Chase, L. R. & Kipnis, D. M. J. biol. Chem. 247, 1114–1120 (1972).

    CAS  PubMed  Google Scholar 

  18. Palmer, S., Hughes, K. T., Lee, D. Y. & Wakelam, M. J. O. Cell. Signal. 1, 147–156 (1989).

    Article  CAS  Google Scholar 

  19. Bradford, M. M. Analyt. Biochem. 65, 248–254 (1976).

    Article  Google Scholar 

  20. Barman, T. E. & Gutfreund, H. in Rapid Mixing and Sampling Techniques in Biochemistry (eds Chance, B., Eisenhardt, R. H., Gibson, Q. H. & Lonberg-Holm, K. K.) 339–344 (Academic, New York, 1964).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breer, H., Boekhoff, I. & Tareilus, E. Rapid kinetics of second messenger formation in olfactory transduction. Nature 345, 65–68 (1990). https://doi.org/10.1038/345065a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345065a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing