Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activin is a nerve cell survival molecule

Abstract

THE structures of five neurotrophic molecules have so far been published. Nerve growth factor1, fibroblast growth factor2, 3 and purpurin4, have been identified as nerve-cell survival molecules. More recently, brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor have been cloned and sequenced5, 6. As all these proteins stimulate the survival of ciliary or sensory neurons, a new cell survival assay is required if novel neurotrophic molecules are to be discovered. P19 teratoma cells differentiate to nerve-like cells in the presence of 5 x 107 M retinoic acid (RA)7, 8. But when P19 cells are plated in N2 synthetic medium9 without being exposed to RA, they die within 48 h. In an attempt to identify a molecule(s) that can substitute for RA in promoting P19 survival, we assayed serum-free growth-conditioned media for their ability to promote P19 survival. One cell line from the rat eye secreted a molecule that promoted the survival of P19 cells and some types of nerve cell. We identified this molecule as activin, better known for its role in hormone secretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levi-Montalcini, R. Prog. Brain Res. 45, 235–258 (1976).

    Article  CAS  Google Scholar 

  2. Baird, A. & Bohlen, P. in Peptide Growth Factors and their Receptors (eds Sporn, M. B. & Roberts, A.) 197–225 (Springer-Verlag, Heidelberg) (1990).

    Google Scholar 

  3. Schubert, D., Ling, N. & Baird, A. J. Cell Biol. 104, 635–643 (1987).

    Article  CAS  Google Scholar 

  4. Berman, P. et al. Cell 51, 135–142 (1987).

    Article  CAS  Google Scholar 

  5. Lin, L. F. et al. Science 246, 1023–1025 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Leibrock, J. et al. Nature 341, 149–151 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Edwards, M. K. & McBurney, M. W. Devl Biol. 98, 189–191 (1983).

    Article  Google Scholar 

  8. Levine, J. M. & Flynn, P. J. Neurosci. 6, 3374–3381 (1986).

    Article  CAS  Google Scholar 

  9. Bottenstein, J. & Sato, G. Proc. natn. Acad. Sci. U.S.A. 76, 514–518 (1978).

    Article  ADS  Google Scholar 

  10. Schubert, D. et al. Nature 249, 224–227 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Albert, D. M. et al. Invest. Ophthalmol. Vis. Sci. 22, 768–782 (1982).

    CAS  PubMed  Google Scholar 

  12. Aebersold, R. H. et al. Proc. natn. Acad. Sci. U.S.A. 84, 6970–6974 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Gonzalez, G. A. et al. Nature 337, 749–752 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Woodruff, T., Meunier, H., Jones, P. B., Hsueh, A. J. & Mayo, K. E. Molec. Endocrinol. 1, 561–570 (1987).

    Article  CAS  Google Scholar 

  15. Vaughan, J. M. et al. Meth. Enzym. 168, 588–617 (1989).

    Article  CAS  Google Scholar 

  16. Meunier, H. et al. Molec. Endocrinol. 2, 1352–1363 (1988).

    Article  CAS  Google Scholar 

  17. Vale, W. et al. Nature 321, 776–779 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Collins, F. Devl Biol. 65, 50–57 (1978).

    Article  CAS  Google Scholar 

  19. Mason, A. J. et al. Nature 318, 659–663 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Eto, Y. et al. Biochem. biophys. Res. Commun. 142, 1095–1103 (1987).

    Article  CAS  Google Scholar 

  21. Murata, M., Eto, Y., Shibai, H., Sakai, M. & Muramatsu, M. Proc. natn. Acad. Sci. U.S.A. 85, 2434–2438 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Kojima, I. & Ogata, E. Biochem. biophys. Res. Commun. 159, 1107–1113 (1989).

    Article  CAS  Google Scholar 

  23. Hedger, M. P., Drummond, A. E., Robertson, D. M., Risbridger, G. P. & de Kretser, D. M. Molec. cell. Endocrinol. 61, 133–138 (1989).

    Article  CAS  Google Scholar 

  24. Sawchenko, P. E. et al. Nature 334, 615–617 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Kondo, S. et al. Biochem. biophys. Res. Commun. 161, 1267–1271 (1989).

    Article  CAS  Google Scholar 

  26. Padgett, R. W., Johnston, D. S. & Gelbart, W. M. Nature 325, 81–83 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Weeks, D. L. & Melton, D. A. Cell 51, 861–867 (1987).

    Article  CAS  Google Scholar 

  28. Martin, G. R. Science 209, 768–776 (1980).

    Article  ADS  CAS  Google Scholar 

  29. Pettman, B., Manthrope, M., Powell, J. A. & Varon, S. J. Neurosci. 8, 3524–3632 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, D., Kimura, H., LaCorbiere, M. et al. Activin is a nerve cell survival molecule. Nature 344, 868–870 (1990). https://doi.org/10.1038/344868a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344868a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing