Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs

Abstract

LEATHERBACKS (Dermochelys coriacea) are among the largest living reptiles (>900 kg)1, 2 and range from the tropics to north of the Arctic Circle3, 4. They maintain elevated body temperatures (25.5 °C) in cold seawater (7.5 °C)5, 6 and heat up on land7. Metabolic and thermoregulatory mechanisms of leatherbacks have important implications for considerations of size and function in animal biology8–10 and for speculation on the endothermic capacities of dinosaurs11–18. Here we report that metabolic rates of adults at rest and while nesting are intermediate to those predicted by allometric relationships for reptiles and mammals. Mathematical modelling indicates that leatherbacks can use large body size, peripheral tissues as insulation, and circulatory changes, to maintain warm temperatures in the North Atlantic and to avoid overheating in the tropics. This 'gigantothermy' probably allowed large dinosaurs to live in varied habitats, including Cretaceous polar regions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Rhodin, A. G. J., Ogden, J. A. & Conologue, G. J. Nature 290, 244–246 (1981).

    ADS  Article  Google Scholar 

  2. 2

    Goff, G. P. & Lien, J. Can. Fld Nat. 102, 1–5 (1988).

    Google Scholar 

  3. 3

    Willgohs, J. F. Nature 179, 163–164 (1957).

    ADS  Article  Google Scholar 

  4. 4

    Bleakney, J. S. Can. Fld Nat. 79, 120–128 (1965).

    Google Scholar 

  5. 5

    Mrosovsky, N. & Pritchard, P. C. H. Copeia 4, 624–631 (1971).

    Article  Google Scholar 

  6. 6

    Frair, W., Ackman, R. G. & Mrosovsky, N. Science 177, 791–793 (1972).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Standora, E. A., Spotila, J. R., Keinath, J. A. & Shoop, C. R. Herpetologica 40, 169–176 (1984).

    Google Scholar 

  8. 8

    Peters, R. H. The Ecological Implications of Body Size (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  9. 9

    Calder, W. A. Size, Function and Life History (Harvard University Press, Cambridge, Massachusetts, 1984).

    Google Scholar 

  10. 10

    Schmidt-Nielsen, K. Scaling: Why is Animal Size So Important (Cambridge University Press, New York, 1984).

    Google Scholar 

  11. 11

    Paul, G. S. J. Paleont. 62, 640–652 (1988).

    Article  Google Scholar 

  12. 12

    Spotila, J. R., Lommen, P. W., Bakken, G. S. & Gates, D. M. Am. Nat. 107, 391–404 (1973).

    Article  Google Scholar 

  13. 13

    Spotila, J. R. in A Cold Look at the Warm-Blooded Dinosaurs (eds Thomas, R. D. K. & Olson, E. C.) 233–254 (AAAS Symposium 28, Westview Press, Boulder, Colorado, 1980).

    Google Scholar 

  14. 14

    Feduccia, A. Evolution 27, 166–169 (1973).

    Article  Google Scholar 

  15. 15

    Bennett, A. F. & Dalzell, B. Evolution 27, 170–174 (1973).

    Article  Google Scholar 

  16. 16

    Dodson, P. Evolution 28, 494–497 (1974).

    Article  Google Scholar 

  17. 17

    Farlow, J. O. Ecology 57, 841–857 (1976).

    Article  Google Scholar 

  18. 18

    McGowan, C. Paleobiology 5, 285–295 (1979).

    Article  Google Scholar 

  19. 19

    Prange, H. D. & Jackson, D. C. Resp. Physiol. 27, 369–377 (1976).

    CAS  Article  Google Scholar 

  20. 20

    Jackson, D. C. & Prange, H. D. J. comp. Physiol. 134, 315–319 (1979).

    Article  Google Scholar 

  21. 21

    Standora, E. A., Spotila, J. R. & Foley, R. E. J. thermal Biol. 7, 159–165 (1982).

    Article  Google Scholar 

  22. 22

    Alexander, R. M. Dynamics of Dinosaurs and Other Extinct Giants (Columbia University Press, New York, 1989).

    Google Scholar 

  23. 23

    McNab, B. K. & Auffenburg, W. Comp. Biochem. Physiol. A55, 345–350 (1976).

    CAS  Article  Google Scholar 

  24. 24

    Brouwers, E. M. et al. Science 237, 1608–1610 (1987).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Rich, P. V. et al. Science 242, 1403–1406 (1988).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Thomas, R. D. K. & Olson, E. C. (eds) A Cold Look at the Warm-Blooded Dinosaurs (AAAS Symposium 28, Westview Press, Boulder, Colorado, 1980).

  27. 27

    Farlow, J. O. & Dodson, P. Evolution 29, 353–361 (1975).

    Article  Google Scholar 

  28. 28

    Bennett, A. F. in Biology of the Reptilia Vol. 13 (eds Gans, C. & Pough, F. H.) 155–199 (Academic, New York, 1982).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paladino, F., O'Connor, M. & Spotila, J. Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs. Nature 344, 858–860 (1990). https://doi.org/10.1038/344858a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing