Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ion channels in the nuclear envelope

Abstract

CELL nuclei are capable of partitioning a wide variety of molecules from the cytosol, including macromolecules such as proteins1–11 and RNA12–14, and smaller peptides9,14–16, amino acids17, sugars18,19 and Na+and K+ ions20,21, all of which can be accumulated in or excluded from the nuclear domain. There are two mechanisms behind this compartmentalization: selective retention of freely diffusible molecules, and selective entry through the nuclear envelope. It is generally accepted that the nuclear envelope restricts only the larger molecules22–24. Here we apply the patch-clamp technique to isolated murine pronuclei25 and show that the nuclear envelope contains K+-selective channels which have multiple conductance states, the maximal conductance being 200 pS. These channels, which contribute to the nuclear membrane potential26, may be important in balancing the charge carried by the movement of macromolecules in and out of the nucleus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bonner, W. M. J. Cell Biol. 64, 421–430 (1975).

    Article  CAS  Google Scholar 

  2. Bonner, W. M. J. Cell Biol. 64, 431–437 (1975).

    Article  CAS  Google Scholar 

  3. Feldherr, C. M. & Pomerantz, J. J. Cell Biol. 78, 168–175 (1978).

    Article  CAS  Google Scholar 

  4. De Robertis, E., Longthorne, R. F. & Gurdon, J. B. Nature 272, 254–256 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Dabauvalle, M. C. & Franke, W. W. Proc. natn. Acad. Sci. U.S.A. 79, 5302–5306 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Feldherr, C. M., Cohen, R. J. & Ogburn, J. A. J. Cell Biol. 96, 1486–1490 (1983).

    Article  CAS  Google Scholar 

  7. Feldherr, C. M., Kallenbach, E. & Schultz, N. J. Cell Biol. 99, 2216–2222 (1984).

    Article  CAS  Google Scholar 

  8. Lanford, R. E. & Butel, J. S. Cell 37, 801–813 (1984).

    Article  CAS  Google Scholar 

  9. Lanford, R. E., Kanda, P. & Kennedy, R. C. Cell 46, 575–582 (1986).

    Article  CAS  Google Scholar 

  10. Newmeyer, D. D., Finlay, D. R. & Forbes, D. J. J. Cell Biol. 103, 2091–2102 (1986).

    Article  CAS  Google Scholar 

  11. Newmeyer, D. D., Lucocq, J. M., Burglin, T. R. & DeRobertis, E. D. EMBO J. 5, 501–510 (1986).

    Article  CAS  Google Scholar 

  12. Steven, B. J. & Swift, H. J. Cell Biol. 31, 55–77 (1966).

    Article  Google Scholar 

  13. Zasloff, M. Proc. natn. Acad. Sci. U.S.A. 80, 6436–6440 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Dworetzky, S. I. & Feldherr, C. M. J. Cell Biol. 106, 575–584 (1988).

    Article  CAS  Google Scholar 

  15. Feldherr, C. M. J. Cell Biol. 20, 188–192 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Horowitz, S. B. & Moore, L. C. J. Cell Biol. 6, 405–415 (1974).

    Article  Google Scholar 

  17. Frank, M. & Horowitz, S. B. J. Cell Sci. 19, 127–139 (1975).

    CAS  PubMed  Google Scholar 

  18. Paine, P. L., Moore, L. C. & Horowitz, S. B. Nature 254, 109–114 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Horowitz, S. B. J. Cell Biol. 54, 609–625 (1972).

    Article  CAS  Google Scholar 

  20. Century, T. J., Fenichel, I. R. & Horowitz, S. B. J. Cell Sci. 7, 5–13 (1970).

    CAS  PubMed  Google Scholar 

  21. Century, T. J. & Horowitz, S. B. J. Cell Sci. 16, 465–471 (1974).

    CAS  PubMed  Google Scholar 

  22. Dingwall, C. & Laskey, R. A. A. Rev. Cell Biol. 2, 367–390 (1986).

    Article  CAS  Google Scholar 

  23. Newport, J. W. & Forbes, D. J. A. Rev. Biochem. 56, 535–565 (1987).

    Article  CAS  Google Scholar 

  24. Gerace, L. & Burke, B. A. Rev. Cell. Biol. 4, 335–374 (1988).

    Article  CAS  Google Scholar 

  25. McGrath, J. & Solter, D. Science 220, 1300–1302 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Loewenstein, W. R. & Kanno, Y. J. gen. Physiol. 46, 1123–1140 (1963).

    Article  CAS  Google Scholar 

  27. Kanno, Y. & Loewenstein, W. R. Expl Cell Res. 31, 149–166 (1963).

    Article  CAS  Google Scholar 

  28. Coronado, R., Rosenberg, R. L. & Miller, C. J. gen. Physiol. 76, 425–446 (1980).

    Article  CAS  Google Scholar 

  29. Coronado, R. & Miller, C. J. gen. Physiol. 79, 529–547 (1982).

    Article  CAS  Google Scholar 

  30. Unwin, P. N. T. & Milligan, R. A. J. Cell Biol. 93, 63–75 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzanti, M., DeFelice, L., Cohen, J. et al. Ion channels in the nuclear envelope. Nature 343, 764–767 (1990). https://doi.org/10.1038/343764a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343764a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing