Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coexpression of two distinct muscle acetylcholine receptor α-subunits during development

Abstract

THE nicotinic acetylcholine receptor is a ligand-gated channel that mediates signalling at the vertebrate neuromuscular junction. It is a pentameric complex of four different subunits, assembled with a stoichiometry of α2βγΔMuscle-like α-subunits have been cloned from Torpedo, mouse, calf, rat, chicken, human and Xenopus, and only a single α-subunit complementary DNA from each species has been detected (reviewed in ref. 1). We report here the cloning and characterization of a second muscle α-subunit cDNA from Xenopus, and show that this and a previously reported Xenopus α-subunit cDNA2 are encoded by distinct genes. The novel α-subunit reported here is expressed uniquely in oocytes; but both types of a-subunit are coexpressed throughout muscle development. This latter observation indicates that the expression of these two α-subunits is different from a previously reported developmental 'su burnt-switch' mechanism used to generate channel diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Claudio, T. in Frontiers of Molecular Biology, Molecular Neurobiology (eds Glover, D. & Hames, D.) 9–88 (IRL, London, 1989).

    Google Scholar 

  2. Baldwin, T. J., Yoshihara, C. M., Blackmer, K., Kintner, C. R. & Burden, S. J. J. Cell Biol. 106, 469–478 (1988).

    Article  CAS  Google Scholar 

  3. Kao, P. N. et al. J. biol. Chem. 259, 11662–11665 (1984).

    CAS  PubMed  Google Scholar 

  4. Sine, S. M. & Taylor, P. J. biol. Chem. 255, 10144–10156 (1980).

    CAS  PubMed  Google Scholar 

  5. Karlin, A. Nature 329, 286–287 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Kintner, C. R. & Melton, D. A. Development 99, 311–325 (1987).

    CAS  PubMed  Google Scholar 

  7. Claudio, T. Proc. natn. Acad. Sci. U.S.A. 84, 5967–5971 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Claudio, T. & Raftery, M. A. Archs Biochem. Biophys. 181, 484–489 (1977).

    Article  CAS  Google Scholar 

  9. Takai, T. et al. Nature 315, 761–764 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Witzemann, V., Barg, B., Criado, M., Stein, E. & Sakmann, B. FEBS Lett. 242, 419–424 (1989).

    Article  CAS  Google Scholar 

  11. Claudio, T. et al. J. Cell Biol. 108, 2277–2290 (1989).

    Article  CAS  Google Scholar 

  12. Paulson, H. L. & Claudio, T. Soc. Neurosci. Abstr. 14, 1045 (1988).

    Google Scholar 

  13. Owens, J. & Kullberg, R. J. Neurosci. 9, 2575–2580 (1989).

    Article  CAS  Google Scholar 

  14. Brehm, P. & Henderson, L. Devl Biol. 129, 1–11 (1988).

    Article  CAS  Google Scholar 

  15. Hucho, F., Oberthur, W. & Lottspeich, F. FEBS Lett. 205, 137–142 (1989).

    Article  Google Scholar 

  16. Giraudat, J., Dennis, M., Heidmann, T., Chang, J.-Y. & Changeux, J.-P. Proc. natn. Acad. Sci. U.S.A. 83, 2719–2723 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Imoto, K. et al. Nature 335, 645–648 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Leonard, R. J., Labarca, C. G., Charnet, P., Davidson, N. & Lester, H. A. Science 242, 1578–1581 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Tzartos, S. J., Kokla, A., Walgrave, S. L. & Conti-Tronconi, B. M. Proc. natn. Acad. Sci. U.S.A. 85, 2899–2903 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Maniatis, T., Fritsch, E. F., & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New Tork, 1982).

    Google Scholar 

  21. Noda, M. et al. Nature 305, 818–823 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Nef., P., Oneyser, C., Barkas, T. & Ballivet, M. in NATO ASI Series, Vol H3 (ed. Maelicke, A.) 417–422 (Springer, Berlin, 1986).

    Google Scholar 

  23. Krieg, P. A. & Melton, D. A. in Meth. Enzym. 155, 397–415 (1987).

    Article  CAS  Google Scholar 

  24. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin, Amsterdam, 1967).

  25. Thompson, J. & Gillespie, D. Analyt. Biochem. 163, 281–291 (1987).

    Article  CAS  Google Scholar 

  26. Dworkin-Rastl, E., Kelly, D. B. & Dworkin, M. B. J. Embryol. exp. Morph. 91, 153–168 (1986).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartman, D., Claudio, T. Coexpression of two distinct muscle acetylcholine receptor α-subunits during development. Nature 343, 372–375 (1990). https://doi.org/10.1038/343372a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343372a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing