Abstract
IN the host cell, retro viral DNAs exist in three main forms: unintegrated linear, unintegrated circular, and integrated (the provirus)1. High levels of unintegrated forms of retroviral DNA often correlate with superinfection and accompanying cytopathic effects2–8, as, for example, in the case of feline acquired immunodeficiency7,8. In culture, HIV-1 infection also results in high levels of unintegrated viral DNA although direct correlations with cytopathicity have not been made9,10. The low frequency of HIV-1-infected cells in patients11,12 has made it difficult to determine the structure of the viral DNA in fresh tissue samples from AIDS patients by standard methods such as Southern hybridization. The PCR technique13,14, however, which allows the detection of viral DNA at levels far below that possible by other hybridization methods is, in its conventional form, of limited use for quantitative analysis. To study the amount and form of HIV-1 DNA in primary tissue of AIDS patients we have therefore modified the PCR method. Our results indicate that each of the three species of viral DNA are detectable in blood and brain of AIDS patients and that in autopsy samples from patients with HIV encephalitis there is a considerably higher proportion of unintegrated viral DNA.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Episomal HIV-1 DNA and its relationship to other markers of HIV-1 persistence
Retrovirology Open Access 30 January 2018
-
Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain
Retrovirology Open Access 16 October 2017
-
HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment
Journal of Neurology Open Access 31 May 2017
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Varmus, H. Science 240, 1427–1435 (1988).
Keshet, E., O'Rear, J. J. & Temin, H. M. Cell 16, 51–61 (1979).
Weller, S. K., Joy, A. E. & Temin, H. M. J. Virol. 33, 494–506 (1980).
Weller, S. K. & Temin, H. M. J. Virol. 39, 713–721 (1981).
Chen, I. S. Y. & Temin, H. M. J. Virol. 41, 183–191 (1982).
Brahic, M., Stowring, L., Ventura, P. & Haase, A. T. Nature 292, 240–242 (1981).
Hoover, E. A., Mullins, J. I., Quackenbush, S. L. & Gasper, P. W. Blood 70, 1880–1892 (1987).
Mullins, J. I., Chen, C. S. & Hoover, E. A. Nature 319, 333–336 (1986).
Shaw, G. M. et al. Science 227, 177–181 (1985).
Ho, D. D. et al. New Engl. J. Med. 313, 1493–1497 (1985).
Harper, M. H., Marselle, L. M., Gallo, R. C. & Wong-Staal, F. Proc. natn. Acad. Sci. U.S.A. 82, 772–776 (1986).
Shaw, G. M. et al. Science 226, 1165–1170 (1984).
Saiki, R. K. et al. Science 230, 1350–1354 (1985).
Saiki, R. K. et al. Science 239, 487–491 (1988).
Koyanagi, Y. et al. Science 236, 819–822 (1987).
Cann, A. J., Koyanagi, Y. & Chen, I. S. Y., in Control of Human Retrovirus Gene Expression (eds Franza, R., Cullen, B. & Wong-Staal, F.) 127–133 (Cold Spring Harbor Laboratory, New York, 1988).
Varmus, H. & Swanstrom, R. in RNA Tumor Viruses (eds Weiss, R., Teich, N., Varmus, N. & Coffin, J.) 369–512 (Cold Spring Harbor Laboratory, New York, 1984).
Varmus, H. & Swanstrom, R. in RNA Tumor Viruses (eds Weiss, R., Teich, N., Varmus, H. & Coffin, J.) 75–134 (Cold Spring Harbor Laboratory, New York, 1985).
Harper, M. E. et al. New Engl. J. Med. 315, 1073–1078 (1986).
Price, R. W. et al. Science 239, 586–592 (1988).
Srinivasan, A., Dorsett, D., York, D., Bohan, C. & Anand, R. Arch. Virol. 99, 135–141 (1988).
Koening, S. et al. Science 223, 1089–1093 (1986).
Wiley, C. A., Schrier, R. D., Nelson, J. A., Lampert, P. W. & Oldstone, M. B. A. Proc. natn. Acad. Sci. U.S.A. 83, 7089–7093 (1986).
Anand, R., Srinivasan, A., Gardner, M. B., Luciw, P. A. & Dandekar, S. Ann. Neurol. 23 (Suppl), S62–S65 (1988).
Fauci, A. S. Science 239, 617–622 (1988).
Brahic, M., Haase, A. T. Proc. natn. Acad. Sci., U.S.A. 75, 6125–6129 (1978).
Harris, J. D. et al. Proc. natn. Acad. Sci. U.S.A. 81, 7212–7215 (1984).
Haase, A. T., Stowring, L., Narayan, O., Griffin, D. & Price, D. Science 195, 175–177 (1977).
Overbaugh, J., Donahue, P. R., Quackenbush, S. L., Hoover, E. A. & Mullins, J. I. Science 239, 906–910 (1988).
Overbaugh, J., Riedel, N., Hoover, E. A. & Mullins, J. I. Nature 332, 731–734 (1988).
Sanchez-Pescador, R. et al. Science 227, 484–492 (1985).
SAS User's Guide: Statistics Version, 5th ED. (SAS Institute, 1985).
Requests for supplementary data should be addressed to the London editorial office of Nature.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Pang, S., Koyanagi, Y., Miles, S. et al. High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature 343, 85–89 (1990). https://doi.org/10.1038/343085a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/343085a0
This article is cited by
-
Episomal HIV-1 DNA and its relationship to other markers of HIV-1 persistence
Retrovirology (2018)
-
Distribution and fate of HIV-1 unintegrated DNA species: a comprehensive update
AIDS Research and Therapy (2017)
-
Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain
Retrovirology (2017)
-
Underlying mechanisms of HIV-1 latency
Virus Genes (2017)
-
HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment
Journal of Neurology (2017)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.