Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functions of the colour-opponent and broad-band channels of the visual system

Abstract

THE colour-opponent and broad-band channels of the primate visual system originate in the retina and remain segregated through several neural stations in the visual system1–7. Until now inferences about their function in vision have been based primarily on studies examining single-cell receptive field properties which have shown that the colour-opponent retinal ganglion cells have small receptive fields, produce sustained responses and receive spatially segregated inputs from different cone types; the broad-band cells have large receptive fields, respond transiently and receive cone inputs that are not spatially separated8–11. We have now examined the visual capacities of rhesus monkeys before and after interrupting either of these channels with small lesions at the lateral geniculate nucleus. Here we report that the colour-opponent channel is essential for the processing of colour, texture, fine pattern and fine stereopsis, whereas the broad-band channel is crucial for the perception of fast flicker and motion. Little or no deficits were found in brightness and coarse-shape discrimination, low spatial frequency stereopsis and contrast sensitivity after the disruption of either of the channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rodieck, R. W. A. Rev. Neurosci. 2, 193–225 (1979).

    Article  CAS  Google Scholar 

  2. Livingstone, M. & Hubel, D. Science 240, 740–749 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Martin, K. A. C. Trends Neurosci. 11, 380–387 (1988).

    Article  CAS  Google Scholar 

  4. Lennie, P. Vision Res. 20. 561–564 (1980).

    Article  CAS  Google Scholar 

  5. DeYoe, E. A. & Van Essen, D. C. Trends Neurosci. 11, 219–226 (1988).

    Article  CAS  Google Scholar 

  6. Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) (Massachusetts Institute of Technology, Cambridge, Massachusetts, 1982).

    Google Scholar 

  7. Zeki, S. M. & Shipp, S. Nature 335, 311–317 (1988).

    Article  ADS  CAS  Google Scholar 

  8. De Monasterio, F. M. & Gouras, P. J. Physiol, Lond. 251, 167–195 (1975).

    Article  CAS  Google Scholar 

  9. Gouras, P. J. Physiol., Lond. 204, 407–419 (1969).

    Article  CAS  Google Scholar 

  10. Schiller, P. H., Malpeli, J. G. & Schein, S. J. J. Neurophysiol. 42, 1124–1133 (1977).

    Article  Google Scholar 

  11. Derrington, A. M., Krauskopf, J. & Lennie, P. J. Physiol., Lond. 357, 241–265 (1984).

    Article  CAS  Google Scholar 

  12. Dreher, B., Fukuda, Y. & Rodieck, R. W. J. Physiol., Lond. 258, 433–452 (1976).

    Article  CAS  Google Scholar 

  13. Leventhal, A. G., Rodieck, R. W. & Dreher, B. Science 213, 1139–1142 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Schiller, P. H. & Malpeli, J. G. J. Neurophysiol. 40, 428–445 (1977).

    Article  CAS  Google Scholar 

  15. Wiesel, T. N. & Hubel, D. H. J. Neurophysiol. 29, 1115–1156 (1966).

    Article  CAS  Google Scholar 

  16. Hubel, D. H. & Wiesel, T. N. J. comp. Neurol. 146, 421–450 (1972).

    Article  CAS  Google Scholar 

  17. Merigan, W. H. & Eskin, T. A. Vision Res. 26, 1751–1761 (1986).

    Article  CAS  Google Scholar 

  18. Shapley, R., Kaplan, E. & Soodak, R. Nature 292, 543–545 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Schiller, P. H. & Colby, C. L. Vision Res. 23, 1631–1641 (1983).

    Article  CAS  Google Scholar 

  20. Derrington, A. M. & Lennie, P. J. Physiol., Lond. 357, 219–240 (1984).

    Article  CAS  Google Scholar 

  21. Merigan, W. H., Katz, L. M. & Maunsell, J. H. R. Invest. Ophthalmol. Vis. Sci. Suppl. 30, 53 (1989).

    Google Scholar 

  22. Lee, B. B., Martin, P. R. & Valberg, A. J. Physiol, Lond 404, 323–347 (1988).

    Article  CAS  Google Scholar 

  23. Heywood, C. A. & Cowey, A. J. Neurosci. 7, 2601–2617 (1987).

    Article  CAS  Google Scholar 

  24. Schiller, P. H., Charles, E. R. & Logothetis, N. K. Invest. Ophthalmol. Vis. Sci. Suppl. 29, 328 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiller, P., Logothetis, N. & Charles, E. Functions of the colour-opponent and broad-band channels of the visual system. Nature 343, 68–70 (1990). https://doi.org/10.1038/343068a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343068a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing