Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sensitivity of the Earth's radiation budget to changes in low clouds

Abstract

VARIOUS mechanisms have been suggested whereby clouds might take part in or initiate climate change, including changes in cloud amounts, liquid-water paths and droplet sizes1–11. Previous studies of the sensitivity of the Earth's radiation budget to cloud liquid-water path and droplet size were made with one-dimensional or even simpler models1–6,12,13, which cannot represent the real cloud distribution. Here I present the results of a study that uses a three-dimensional general circulation model, which should give more reliable estimates. The top-of-atmosphere radiative forcing by doubled carbdn dioxide concentrations can be balanced by modest relative increases of 15–20% in the amount of low clouds and 20-35% in liquid-water path, and by decreases of 15–20% in mean drop radius (depending on the version of the model). This indicates that a minimum relative accuracy of 5% is needed, both to simulate these quantities in climate models and to estimate climate response by monitoring them over extended periods from satellite platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655–661 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Schneider, S. H. J. atmos. Sci. 29, 1413–1422 (1972).

    Article  ADS  Google Scholar 

  3. Paltridge, G. W. Q. Jl R. met. Soc. 106, 895–899 (1980).

    Article  ADS  Google Scholar 

  4. Charlock, T. P. Tellus 34, 245–254 (1982).

    Article  ADS  Google Scholar 

  5. Twomey, S. A., Piepgrass, M. & Wolfe, T. L. Tellus 36B, 356–366 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Somerville, R. C. J. & Remer, L. A. J geophys. Res. 89, 9668–9672 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Schlesinger, M. E. & Mitchell, J. F. B. Rev. geophys. 25, 760–798 (1987).

    Article  ADS  Google Scholar 

  8. Wetherald, R. T. & Manabe, S. J. atmos. Sci. 45, 1397–1415 (1988).

    Article  ADS  Google Scholar 

  9. Schwartz, S. E. Nature 336, 441–445 (1988).

    Article  ADS  Google Scholar 

  10. Wigley, T, M. L. Nature 339, 365–367 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Mitchell, J. F. B., Senior, C. A. & Ingram, W. J. Nature 341, 132–134 (1989).

    Article  ADS  Google Scholar 

  12. Stephens, G. L. & Webster, P, J. J. atmos. Sci. 38, 235–247 (1981).

    Article  ADS  Google Scholar 

  13. Webster, P. J. & Stephens, G. L. in The Global Climate (ed. Houghton, J, T.) 63–78 (Cambridge University Press, 1984).

    Google Scholar 

  14. Ramanathan, V. et al. Science 243, 57–63 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Randall, D. A. et al. Bull. Am. met. Soc. 65, 1290–1301 (1984).

    Article  Google Scholar 

  16. Coakley, J. A., Bernstein, R. L. & Durkee, P. A. Science 237, 1020–1022 (1987).

    Article  ADS  Google Scholar 

  17. Schlesinger, M. E. Nature 336, 315–316 (1988).

    Article  Google Scholar 

  18. Schlesinger, M. E. in Physically-Based Modelling and Simulation of Climate and Climatic Change Part 2 (ed. Schlesinger, M. E.) 653–735 (Kluwer, Dordrecht, 1988).

    Google Scholar 

  19. Slingo, A. & Slingo, J. M., Q. Jl R. met. Soc. 114, 1027–1062 (1988).

    Article  ADS  Google Scholar 

  20. Cess, R. D. et al. Science 245, 513–516 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Williamson, D. L. et al. Description of NCAR Community Climate Model [CCMD NCAR Technical Note NCAR/TN-285+STR (Natl Cent. Atmos. Res. Boulder. 1987)

    Google Scholar 

  22. Slingo, A. J. atmos. Sci. 46, 1419–1427 (1989).

    Article  ADS  Google Scholar 

  23. Ramanathan, V. et al. J. atmos. Sci. 40, 605–630 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Slingo, J. M. Q. Jl R. met. Soc. 113, 899–927 (1987).

    Article  ADS  Google Scholar 

  25. Results from the International Satellite Cloud Climatology Project* (ISCCP) (World Climate Research Programme Radiation Projects Office, Geneva, 1989).

  26. Kiehl, J, T. & Ramanathan, V. J. geophys. Res. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slingo, A. Sensitivity of the Earth's radiation budget to changes in low clouds. Nature 343, 49–51 (1990). https://doi.org/10.1038/343049a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343049a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing