Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Does mass accretion lead to field decay in neutron stars?

Abstract

WHETHER or not neutron-star magnetic fields decay is a matter of current debate. The recent observation1,2 of cyclotron lines from γ-ray-burst sources, thought to be relatively old neutron stars, indicates that they are strongly magnetized and therefore that their fields have not decayed. One interpretation of the correlation observed3 between the strength of the magnetic field and the mass accreted by the neutron star is that mass accretion may itself lead to the decay of the magnetic field. Adopting the hypothesis of accretion-induced field decay, we calculate here the consequent evolution of a neutron star's spin and magnetic field. The results are consistent with observations of binary and millisecond radio pulsars. Thermomagnetic effects4 could provide a possible physical mechanism for such accretion-induced field decay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Murakami, T. et al. Nature 335, 234–235 (1988).

    Article  ADS  Google Scholar 

  2. Fenimore, E. E. et al. Astrophys. J. 335, L71–L74 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Taam, R. E. & van den Heuvel, E. P. J. Astrophys. J. 305, 235–245 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Blondin, J. M. & Freese, K. Nature 323, 786–788 (1986).

    Article  ADS  Google Scholar 

  5. Lyne, A. G., Manchester, R. N. & Taylor, J. H. Mon. Not. R. astr. Soc. 213, 613–639 (1985).

    Article  ADS  Google Scholar 

  6. Stollman, G. M. Astr. Astrophys 178, 143–152 (1987).

    ADS  Google Scholar 

  7. Kulkarni, S. R. Astrophys. J. 306, L85–L89 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Candy, B. N. & Blair, D. G. Astrophys. J. 307, 535–539 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Cheng, A. F. Astrophys. J. 337, 803–813 (1989).

    Article  ADS  Google Scholar 

  10. Kundt, W. Comments Astrophys. 12, 113–121 (1988).

    ADS  Google Scholar 

  11. Ostriker, J. P. & Gunn, J. E. Astrophys. J. 157, 1395–1417 (1969).

    Article  ADS  Google Scholar 

  12. Sang, Y. & Chanmugan, G. Astrophys. J. 323, L61–L64 (1987).

    Article  ADS  Google Scholar 

  13. Kulkarni, S. R. in Physics of Neutron Stars and Black Holes (ed. Tanaka, Y.) 37–53 (Universal Academy, 1988).

    Google Scholar 

  14. Van den Heuvel, E. P. J. in The Origin and Evolution Neutron Stars (eds Helfand, D. J. & Huang, J-H.) 393–406 (Reidel, Dordrecht, 1987).

    Book  Google Scholar 

  15. Nomoto, K. in The Origin and Evolution Neutron Stars (eds Helfand, D. J. & Huang, J-H.) 282–303 (Reidel, Dordrecht, 1987).

    Google Scholar 

  16. Michel, F. C. Nature 329, 310–312 (1987).

    Article  ADS  Google Scholar 

  17. Chanmugan, G. & Brecher, K. Nature 329, 696–698 (1987).

    Article  ADS  Google Scholar 

  18. Grindlay, J. E. & Bailyn, C. D. Nature 336, 48–50 (1988).

    Article  ADS  Google Scholar 

  19. Brecher, K. & Chanmugan, G. Nature 338, 712 (1989).

    Article  ADS  Google Scholar 

  20. Van den Heuvel, E. P. J., van Paradijs, J. A. & Taam, R. E. Nature 322, 153–155 (1986).

    Article  ADS  Google Scholar 

  21. Alpar, M. A., Cheng, A. F., Ruderman, M. A. & Shaham, J. Nature 300, 728–730 (1982).

    Article  ADS  Google Scholar 

  22. Michel, F. C. Astrophys. J. 290, 721–727 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Liang, E. Comments Astrophys. 12, 35–49 (1987).

    ADS  CAS  Google Scholar 

  24. Van Paradijs, J. A. Mon. Not. R. astr. Soc. 238, 45–48 (1989).

    Article  ADS  Google Scholar 

  25. Hartmann, D., Epstein, R. I. & Woosley, S. E. Astrophys. J. (in the press).

  26. Wang, J. C. L. et al. Phys. Rev. Lett. (submitted).

  27. Bussard, R. W. & Lamb, F. K. in Gamma-Ray Transients and Related Astrophysical Phenomena (eds Lingenfeiter, R. E., Hudson, H. S. & Worrall, D. M.) 189–200 (American Institute of Physics, 1982).

    Google Scholar 

  28. Ghosh, P. & Lamb, F. K. Astrophys. J. 234, 296–316 (1979).

    Article  ADS  Google Scholar 

  29. Alpar, M. A. & Shaham, J. Nature 316, 239–241 (1985).

    Article  ADS  Google Scholar 

  30. Lewin, W. H. G., van Paradijs, J. & van der Klis, M. Space Sci. Rev. 46, 273–377 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibazaki, N., Murakami, T., Shaham, J. et al. Does mass accretion lead to field decay in neutron stars?. Nature 342, 656–658 (1989). https://doi.org/10.1038/342656a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342656a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing