Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Patch clamp studies of single cell-fusion events mediated by a viral fusion protein

Abstract

TO enter cells, viruses must fuse their envelope with a host cell membrane. Fusion is mediated by specific, membrane-spanning fusion proteins1,2, of which the influenza virus haemagglutinins (HA) are the best characterized. Several HAs have been sequenced, and the crystal structure of the major part of one HA is known3. The conditions for fusion and some of the rearrangements in the HA that accompany fusion1–3 are well understood, but it remains unclear how HA causes bilayers to fuse. We have observed, in real time, unitary cell-fusion events caused by HA. Fibroblasts expressing HA were induced to fuse with red blood cells by a rapid drop in pH4. Fusion was monitored by fluorescence microscopy, and by measuring the membrane conductance and capacitance of the fibroblast. The earliest event observed was the sudden opening of an aqueous pore connecting the cytoplasms of the fusing cells. Initially, the pore conductance often fluctuated between zero and 600 pS, as if the pore were opening and closing repeatedly. Later, it increased over tens of seconds, as if the pore dilated. We suggest that, as in exocytosis5, HA-mediated membrane fusion begins with the formation of a narrow pore. Based on the conductance, we estimate the initial diameter of the pore to be no more than twice that of a gap junction channel6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stegmann, T., Doms, R. & Helenius, A. A. Rev. Biophys. biophys. Chem. 18, 187–211 (1989).

    Article  CAS  Google Scholar 

  2. White, J. M. A. Rev. Physiol. 52, 675–697 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Wiley, D. C. & Skehel, J. J. A. Rev. Biochem. 56, 365–394 (1987).

    Article  CAS  Google Scholar 

  4. Doxsey, S. J., Sambrook, J., Helenius, A. & White, J. M. J. cell Biol. 101, 19–27 (1985).

    Article  CAS  Google Scholar 

  5. Breckenridge, L. J. & Almers, W. Nature 328, 814–817 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Unwin, P. N. T. & Zampighi, G. Nature 283, 545–549 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Ellens, H., Doxsey, S., Glenn, J. S. & White, J. M. in Methods in Cell Biology (ed. Tartakoff, A.) 31, 155–176 (Academic, New York, 1989).

    Google Scholar 

  8. Morris, S. J., Sarkar, D. P., White, J. M. & Blumenthal, R. J. biol. Chem. 264, 3972–3978 (1989).

    CAS  PubMed  Google Scholar 

  9. Sakmann, B., Patlak, J. & Neher, E. Nature 286, 71–73 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Fernandez, J. M., Neher, E. & Gomperts, B. D. Nature 312, 453–455 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Breckenridge, L. J. & Almers, W. Proc. natn. Acad. Sci. U.S.A. 84, 1945–1949 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Young, J. D.-E., Young, G. P. H., Cohn, Z. A. & Lenard, J. virology 128, 186–194 (1983).

    Article  CAS  Google Scholar 

  13. Hoekstra, D., deBoer, T., Klappe, K. & Wilschut, J. Biochemistry 23, 5675–5681 (1984).

    Article  CAS  Google Scholar 

  14. Sarkar, D. P., Morris, S. J., Eidelman, O., Zimmerberg, J. & Blumenthal, R. J. cell biol. 109, 113–122 (1989).

    Article  CAS  Google Scholar 

  15. Neyton, J. & Trautmann, A. Nature 317, 331–335 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Veenstra, R. D. & DeHaan, R. L. Am. J. Physiol. 254, H170–H180 (1988).

    CAS  PubMed  Google Scholar 

  17. Young, J. D-E., Cohn, Z. A. & Podack, E. R. Science 233, 184–190 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Knoll, G., Burger, K. N. J., Bron, R., van Meer, G. & Verkleij, A. J. J. cell Biol. 107, 2511–2521 (1988).

    Article  CAS  Google Scholar 

  19. Almers, W., Breckenridge, L. & Spruce, A. E. J. Physiol. 407, 96p (1988).

    Google Scholar 

  20. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  21. Neher, E. & Marty, A. Proc. natn. Acad. Sci. U.S.A. 79, 6712–6716 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spruce, A., Iwata, A., White, J. et al. Patch clamp studies of single cell-fusion events mediated by a viral fusion protein. Nature 342, 555–558 (1989). https://doi.org/10.1038/342555a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342555a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing