Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of glia-derived nexin after lesion of a peripheral nerve

Abstract

GLIA-derived nexin1 (GDN), also known as protease nexin I2,3, is a serine protease inhibitor of deduced relative molecular mass 41,700, identified in conditioned media of glioma cells by its neurite-promoting activity4. GDN can promote neurite outgrowth in vitro from neuroblastoma cells5,6, sympathetic neurons7 and hippocampal neurons (L. Farmer et al., manuscript in preparation). In vivo, GDN is constitutively expressed in all parts of the olfactory system8, where axonal regeneration and neurogenesis occur continuously throughout life. This observation indicates that GDN could be important for axonal regeneration in vivo. To investigate this possibility, we have taken advantage of the fact that damage to nerves in the peripheral nervous system leads to their regeneration, whereas in the central nervous system no such regeneration can occur. Here we report that after lesion of the rat sciatic nerve there is a large transient increase in the amount of GDN messenger RNA and of released GDN. The cells showing GDN immunoreactivity are mainly localized distal to the lesion site. These results further support the suggestion that GDN is important for axonal regeneration in vivo, and indicate that protease inhibitors could have a role in Wallerian degeneration and peripheral nerve regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sommer, J. et al. Biochemistry 26, 6407–6410 (1987).

    Article  CAS  Google Scholar 

  2. Baker, J. B., Low, D. A., Simmer, R. L. & Cunningham, D. D. Cell 21, 37–45 (1980).

    Article  CAS  Google Scholar 

  3. McGrogan, M. et al. Biotechnology 6, 172–177 (1988).

    CAS  Google Scholar 

  4. Monard, D., Solomon, F., Rentsch, M. & Gysin, R. Proc. natn. Acad. Sci. U.S.A. 70, 1894–1897 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Monard, D., Niday, E., Limat, A. & Solomon, F. Prog. Brain Res. 58, 359–364 (1983).

    Article  CAS  Google Scholar 

  6. Gurwitz, D. & Cunningham, D. D. Proc. natn. Acad. Sci. U.S.A. 85, 3440–3444 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Zurn, A. D., Nick H. & Monard, D. Devl. Neurosci. 10, 17–24 (1988).

    Article  CAS  Google Scholar 

  8. Reinhard, E., Meier, R., Halfter, W., Rovelli, G. & Monard, D. Neuron 1, 387–394 (1988).

    Article  CAS  Google Scholar 

  9. Perry, V. H., Brown, M. C. & Gordon, S., J. exp. Med. 165, 1218–1223 (1987).

    Article  CAS  Google Scholar 

  10. Dijkstra, C. D., Doepp, E. A., Joling, P. & Kraal, G. Immunology 54, 589–599 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Campell, D. G., Gagnon, J., Reid, K. B. M. & Williams, A. F. Biochem. J. 195, 15–30 (1981).

    Article  Google Scholar 

  12. Gery, J., Gershon, R. K. & Waksman, B. J. exp. Med. 136, 128–133 (1972).

    Article  CAS  Google Scholar 

  13. Lindholm, D., Heumann, R., Meyer, M. & Thoenen H. Nature 330, 658–659 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Heumann, R. et al. Proc. natn. Acad. Sci. U.S.A. 84, 8735–8739 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Martini, R. & Schachner, M. J. Cell Biol. 106, 1735–1746 (1988).

    Article  CAS  Google Scholar 

  16. Bergman, B. L., Scott, R. W., Bajpai, A., Watts, S. & Baker, J. B. Proc. natn. Acad. Sci. U.S.A. 83, 996–1000 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Bignami, A., Cella, G. & Chi, N. H. Acta neuropath. 58, 224–228 (1982).

    Article  CAS  Google Scholar 

  18. Farrell, D. H., Wagner, S. L., Yuan, R. H. & Cunningham, D. D. J. Cell Physiol. 134, 179–188 (1988).

    Article  CAS  Google Scholar 

  19. Laiho, M., Saksela, O., Andreasen, P. A. & Keski-Oja, J. J. Cell Biol. 103, 2403–2410 (1986).

    Article  CAS  Google Scholar 

  20. Gronke, R. S., Knauer, D. J., Veeraraghavan, S. & Baker, J. B. Blood 73, 472–478 (1989).

    CAS  PubMed  Google Scholar 

  21. Wagner, S. L., Lau, A. L. & Cunningham, D. D. J. biol. Chem. 264, 611–615 (1989).

    CAS  Google Scholar 

  22. Schwab, M. E. & Thoenen, H. J. Neurosci. 5, 2415–2423 (1985).

    Article  CAS  Google Scholar 

  23. Glisin, V., Crkvenjakov, R. & Byus, C. Biochemistry 13, 2633–2637 (1974).

    Article  CAS  Google Scholar 

  24. Gloor, S., Odink, K., Guenther, J., Nick, H.-P. & Monard, D. Cell 47, 687–693 (1986).

    Article  CAS  Google Scholar 

  25. Hsu, S. M., Raine, L. & Fanger, H. J. Histochem. Cytochem. 29, 577–580 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, R., Spreyer, P., Ortmann, R. et al. Induction of glia-derived nexin after lesion of a peripheral nerve. Nature 342, 548–550 (1989). https://doi.org/10.1038/342548a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342548a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing