Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein

Abstract

DURING the biosynthesis of selenoproteins in both prokaryotes and eukaryotes, selenocysteine is cotranslationally incorporated into the nascent polypeptide chain1, 2 through a process directed by a UGA codon that normally functions as a stop codon3–5. Recently, four genes have been identified whose products are required for selenocysteine incorporation in Escherichia coli6. One of these genes,selC, codes for a novel transfer RNA species (tRNAUCA) that accepts serine and cotranslationally inserts selenocysteine by recognizing the specific UGA codon7. The serine residue attached to this tRNA is converted to selenocysteine in a reaction dependent on functional selA and selD gene products8. By contrast, the selB gene product (SELB) is not required until after selenocysteyl-tRNA biosynthesis8. Here we present evidence indicating that SELB is a novel translation factor. The deduced amino-acid sequence of SELB exhibits extensive homology with the sequences of the translation initiation factor-2 (IF-2) and elongation factor Tu (EF-Tu). Furthermore, purified SELB protein binds guanine nucleotides in a 1:1 molar ratio and specifically complexes selenocysteyl-tRNAUCA, but does not interact with seryl-tRNAUCA. Thus, SELB could be an amino acid-specific elongation factor, replacing EF-Tu in a special translational step.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zinoni, F., Birkmann, A., Leinfelder, W. & Böck, A. Proc. natn. Acad. Sci. U.S.A. 84, 3156–3160 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Böck, A. & Stadtman, T. C. Biofactors 1, 245–250 (1988).

    PubMed  Google Scholar 

  3. Zinoni, F., Birkmann, A., Stadtman, T. C. & Böck, A. Proc. natn. Acad. Sci. U.S.A. 83, 4650–4654 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Chambers, I. et al. EMBO J. 5, 1221–1227 (1986).

    Article  CAS  Google Scholar 

  5. Sukenaga, Y., Ishida, K., Takeda, T. & Takagi, K. Nucleic Acids Res. 15, 7187 (1987).

    Article  Google Scholar 

  6. Leinfelder, W. et al. J. Bacteriol. 170, 540–546 (1988).

    Article  CAS  Google Scholar 

  7. Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M. A. & Böck, A. Nature 331, 723–725 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Leinfelder, W., Stadtman, T. C. & Böck, A. J. biol. Chem. 264, 9720–9723 (1989).

    CAS  PubMed  Google Scholar 

  9. Dever, T. E., Glynias, M. J. & Merrick, W. C. Proc. natn. Acad. Sci. U.S.A. 84, 1814–1818 (1987).

    Article  ADS  CAS  Google Scholar 

  10. LaCour, T. M. F., Nyborg, J., Thirpu, S. & Clark, B. F. C. EMBO J. 4, 2385–2388 (1985).

    Article  CAS  Google Scholar 

  11. Gualerzi, C. O. et al. in Structure, Function, and Genetics of Ribosomes (eds Hardesty, B. & Kramer, G.) 621–641 (Springer, New York, 1986).

    Book  Google Scholar 

  12. Arai, K., Kawakita, M. & Kaziro, Y. J. Biochem., Tokyo 76, 293–306 (1976).

    Article  Google Scholar 

  13. Pingoud, A., Urbanke, C., Krauss, G., Peters, F. & Maass, G. Eur. J. Biochem. 78, 403–409 (1977).

    Article  CAS  Google Scholar 

  14. Petersen, H. U., Roll, T., Grunberg-Manago, M. & Clark, B. F. C. Biochem. biophys. Res. Commun. 91, 1068–1074 (1979).

    Article  CAS  Google Scholar 

  15. Knowlton, R. G. & Yarus, M. J. Molec. Biol. 139, 721–732 (1980).

    Article  CAS  Google Scholar 

  16. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–561 (1980).

    Article  CAS  Google Scholar 

  17. Jones, M. D. et al. Eur. J. Biochem. 108, 507–526 (1980).

    Article  CAS  Google Scholar 

  18. Sacerdot, C. P., Dessen, P., Hershey, J. W. B., Plumbridge, J. A. & Grunberg-Manago, M. Proc. natn. Acad. Sci. U.S.A. 81, 7787–7791 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Kohno, K. et al. Proc. natn. Acad. Sci. U.S.A. 83, 4978–4982 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Van Noort, J. M. et al. Eur. J. Biochem. 160, 557–561 (1986).

    Article  CAS  Google Scholar 

  21. Jonak, J., Pokorna, K., Meloun, B. & Karas, K. J. Biochem. 154, 355–362 (1986).

    CAS  Google Scholar 

  22. Van Noort, J. M., Kraal, B. & Bosch, L. Proc. natn. Acad. Sci. U.S.A. 82, 3212–3216 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Leinfelder, W., Forchhammer, K., Veprek, B., Zehelein, E. & Böck, A. Proc. natn. Acad. Sci. U.S.A. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forchhammer, K., Leinfelder, W. & Böck, A. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342, 453–456 (1989). https://doi.org/10.1038/342453a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342453a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing