Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fluorescence energy transfer shows that the four-way DNA junction is a right-handed cross of antiparallel molecules

Abstract

THE four-way junction between DNA helices is the central intermediate in recombination1–10, and the manner of its interaction with resolvase enzymes can determine the genetic outcome of the process. A knowledge of its structure is a prerequisite to understanding the interaction with proteins, and there has been recent progress11–14. Here we use fluorescence energy transfer to determine the relative distances between the ends of a small DNA junction, and hence the path of the strands. Our results are consistent with the geometry of an 'X'. The interconnected helices are juxtaposed so that the continuous strands of each helix generate an antiparallel alignment, and the two interchanged strands do not cross at the centre. The acute angle of the X structure is defined by a right-handed rotation of the helical axes about the axis perpendicular to the X plane, as viewed from the centre of the X.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holliday, R. Genet Res. 5, 282–304 (1964).

    Article  Google Scholar 

  2. Meselson, M. S. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. 72, 358–361 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Broker, T. R. & Lehman, I. R. J. molec. Biol. 60, 131–149 (1971).

    Article  CAS  Google Scholar 

  4. Sobell, H. M. Proc. natn. Acad. Sci. U.S.A. 69, 2483–2487 (1972).

    Article  ADS  CAS  Google Scholar 

  5. Sobell, H. M. in Mechanisms in Recombination (ed. Grell, R. F.) 433–438 (Plenum, New York, 1974).

    Book  Google Scholar 

  6. Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. Proc. natn. Acad. Sci. U.S.A. 78, 6354–6358 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Kitts, P. A. & Nash, H. A. Nature 329, 346–348 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Nunes-Düby, S. E., Matsumoto, L. & Landy, A. Cell 50, 779–788 (1987).

    Article  Google Scholar 

  9. Hoess, R., Wierzbicki, A. & Abremski, K. Proc. natn. Acad. Sci. U.S.A. 84, 6840–6844 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Jayaram, M., Crain, K. L., Parsons, R. L. & Harshey, R. M. Proc. natn. Acad. Sci. U.S.A. 85, 7902–7906 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Gough, G. W. & Lilley, D. M. J. Nature 313, 154–156 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Cooper, J. P. & Hagerman, P. J. J. molec. Biol. 198, 711–719 (1987).

    Article  CAS  Google Scholar 

  13. Duckett, D. R. et al. Cell 55, 79–89 (1988).

    Article  CAS  Google Scholar 

  14. Churchill, M. E. A., Tullius, T. D., Kallenbach, N. R. & Seeman, N. C. Proc. natn. Acad. Sci. U.S.A. 85, 4653–4646 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Bell, L. R. & Byers, B. Proc. natn. Acad. Sci. U.S.A. 76, 3445–3449 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Kallenbach, N. R., Ma, R-I. & Seeman, N. C. Nature 305, 829–831 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Hsu, P. L. & Landy, A. Nature 311, 721–726 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Sigal, N. & Alberts, B. J. molec. Biol. 71, 789–793 (1972).

    Article  CAS  Google Scholar 

  19. Mueller, J. E., Kemper, B., Cunningham, R. P., Kalenbach, N. R. & Seeman, N. C. Proc. natn. Acad. Sci. U.S.A. 85, 9441–9445 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Forster, T. Ann. Phys. 2, 55–75 (1948).

    Article  CAS  Google Scholar 

  21. Förster, T. Fluorescence Organischer Verbindungen (Vandenhoeck & Ruprecht, Göttingen, 1951).

    Google Scholar 

  22. Fairclough, R. H. & Cantor, C. R. Meth. Enzym. 48, 347–379 (1978).

    Article  CAS  Google Scholar 

  23. Stark, M., Sherratt, D. & Boocock, M. Cell 58, 779–790 (1989).

    Article  CAS  Google Scholar 

  24. Klyne, W. & Prelog, V. Experientia 16, 521–523 (1960).

    Article  CAS  Google Scholar 

  25. Sinha, N. D., Biernat, J., McManus, J. & Koster, H. Nucleic Acids Res. 12, 4539–4557 (1984).

    Article  CAS  Google Scholar 

  26. Beaucage, S. I. & Caruthers, M. H. Tetrahedron Lett. 22, 1859–1862 (1981).

    Article  CAS  Google Scholar 

  27. Coull, J., Wright, L. & Bischoff, R. Tetrahedron Lett. 27, 3991–3995 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murchie, A., Clegg, R., Krtzing, E. et al. Fluorescence energy transfer shows that the four-way DNA junction is a right-handed cross of antiparallel molecules. Nature 341, 763–766 (1989). https://doi.org/10.1038/341763a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341763a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing