Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Krüppel requirement for knirps enhancement reflects overlapping gap gene activities in the Drosophila embryo

Abstract

SEGMENTAL pattern formation in Drosophila proceeds in a hierarchical manner whereby the embryo is stepwise divided into progressively finer regions until it reaches its final metameric form1,2. Maternal genes initiate this process by imparting on the egg a distinct antero-posterior polarity and by directing from the two polar centres the activities of the zygotic genes3. The anterior system is strictly dependent on the product of the maternal gene bicoid (bcd), without which all pattern elements in the anterior region of the embryo fail to develop4. The posterior system seems to lack such a morphogen. Rather, the known posterior maternal determinants simply define the boundaries within which abdominal segmentation can occur, and the process that actively generates the abdominal body pattern may be entirely due to the interactions between the zygotic genes5–7. The most likely candidates among the zygotic genes that could fulfil the role of initiating the posterior pattern-forming process are the gap genes, as they are the first segmentation genes to be expressed in the embryo8–10. Here we describe the interactions between the gap genes Krüppel (Kr), knirps (kni) and tailless (tll). We show thatkniexpression is repressed by til activity, whereas it is directly enhanced by Kr activity. Thus, Kr activity is present throughout the domain of kni expression and forms a long-range protein gradient, which in combination with kni activity is required for abdominal segmentation of the embryo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ingham, P. W. Nature 335, 25–34 (1988).

    Article  CAS  ADS  Google Scholar 

  2. Akam, M. Development 101, 1–22 (1987).

    CAS  Google Scholar 

  3. Nüsslein-Volhard, C., Frohnhöfer, H. G. & Lehmann, R. Science 238, 1675–1681 (1987).

    Article  ADS  Google Scholar 

  4. Frohnhöfer, H. G. & Nüsslein-Volhard, C. Nature 324, 120–125 (1986).

    Article  ADS  Google Scholar 

  5. Hülskamp, M., Schröder, C., Pfeifle, C., Jäckle, H. & Tautz, D. Nature 338, 629–632 (1989).

    Article  ADS  Google Scholar 

  6. Irish, V., Lehmann, R. & Akam, M. Nature 338, 646–648 (1989).

    Article  CAS  ADS  Google Scholar 

  7. Struhl, G. Nature 338, 741–744 (1989).

    Article  CAS  ADS  Google Scholar 

  8. Knipple, D. C., Seifert, E., Rosenberg, R. B., Preiss, A. & Jäckle, H. Nature 317, 40–44 (1985).

    Article  CAS  ADS  Google Scholar 

  9. Tautz, D. et al. Nature 327, 383–389 (1987).

    Article  CAS  ADS  Google Scholar 

  10. Nauber, U. et al. Nature 336, 489–492 (1988).

    Article  CAS  ADS  Google Scholar 

  11. Wieschaus, E., Nüsslein-Volhard, C. & Kluding, H. Devl Biol. 104, 172–186 (1984).

    Article  CAS  Google Scholar 

  12. Lehmann, R. Development (Suppl.) 104, 17–27 (1988).

    Google Scholar 

  13. Strecker, T. R., Kongsuwan, K., Lengyel, J. A. & Merriam, J. R. Devl Biol. 113, 64–71 (1986).

    Article  CAS  Google Scholar 

  14. Rothe, M., Nauber, U. & Jäckle, H. EMBO J., in the press.

  15. Rubin, G. M. & Spradling, A. C. Science 218, 348–353 (1982).

    Article  CAS  ADS  Google Scholar 

  16. Klinger, M., Erdelyi, M., Szabad, J. & Nüsslein-Volhard, C. Nature 335, 275–277 (1988).

    Article  ADS  Google Scholar 

  17. Strecker, T. R., Halsell, S. R., Fisher, W. W. & Lipshitz, H. D. Science 243, 1062–1066 (1989).

    Article  CAS  ADS  Google Scholar 

  18. Desplan, C., Theis, J. & O'Farrell, P. H. Nature 318, 630–635 (1985).

    Article  CAS  ADS  Google Scholar 

  19. Galas, D. J. & Schmitz, A. Nucleic Acids Res. 5, 3157–3170 (1978).

    Article  CAS  Google Scholar 

  20. Gaul, U. & Jäckle, H. Trends Genet. 3, 127–131 (1987).

    Article  Google Scholar 

  21. Gaul, U., Seifert, E., Schuh, R. & Jäckle, H. Cell 50, 639–647 (1987).

    Article  CAS  Google Scholar 

  22. Gaul, U. & Jäckle, H. Development, in the press.

  23. Frasch, M. & Levine, M. Genes Dev. 1, 981–995 (1987).

    Article  CAS  Google Scholar 

  24. Driever, W. & Nüsslein-Volhard Cell 54, 83–93 (1988).

    Article  CAS  Google Scholar 

  25. Driever, W. & Nüsslein-Volhard Cell 54, 95–104 (1988).

    Article  CAS  Google Scholar 

  26. Driever, W., Thoma, G. & Nüsslein-Volhard, C. Nature 340, 363–367 (1989).

    Article  CAS  ADS  Google Scholar 

  27. Struhl, G., Struhl, K. & Macdonald, P. Cell 57, 1259–1273 (1989).

    Article  CAS  Google Scholar 

  28. Schröder, C., Tautz, D., Seifert, E. & Jäckle, H. EMBO J. 7, 2881–2887 (1988).

    Article  Google Scholar 

  29. Driever, W. & Nüsslein-Volhard, C. Nature 337, 138–143 (1989).

    Article  CAS  ADS  Google Scholar 

  30. Gaul, U. & Jäckle, H. Cell 51, 549–555 (1987).

    Article  CAS  Google Scholar 

  31. Goto, T., Macdonald, P. & Maniatis, T. Cell 57, 413–422 (1989).

    Article  CAS  Google Scholar 

  32. Harding, K., Hoey, T., Warrior, R. & Levine, M. EMBO J. 8, 1205–1212 (1989).

    Article  CAS  Google Scholar 

  33. Howard, K., Ingham, P. & Rushlow, C. Genes Dev. 2, 1037–1046 (1988).

    Article  CAS  Google Scholar 

  34. Tautz, D. & Pfeifle, C. Chromosoma 98, 81–85 (1989).

    Article  CAS  Google Scholar 

  35. Thummel, C., Boulet, A. M. & Lipshitz, H. D. Gene 74, 445–456 (1988).

    Article  CAS  Google Scholar 

  36. Macdonald, P. M. & Struhl, G. Nature 324, 537–545 (1986).

    Article  CAS  ADS  Google Scholar 

  37. Studier, F. W. & Moffatt, B. A. J. molec. Biol. 189, 113–130 (1986).

    Article  CAS  Google Scholar 

  38. Rosenberg, U. et al. Nature 319, 336–339 (1986).

    Article  CAS  ADS  Google Scholar 

  39. Kadonaga, J. T., Carner, K. R., Masiarz, F. R. & Tjian, R. Cell 51, 1079–1090 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankratz, M., Hoch, M., Seifert, E. et al. Krüppel requirement for knirps enhancement reflects overlapping gap gene activities in the Drosophila embryo. Nature 341, 337–340 (1989). https://doi.org/10.1038/341337a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341337a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing