Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct measurement of the diffusive sublayer at the deep sea floor using oxygen microelectrodes

Abstract

THE diffusive sublayer is the region of fluid next to a solid surface, where turbulence is suppressed and molecular diffusion dominates transport of solutes. Diffusive impedance of solute exchange across the benthic sublayer in the deep sea can limit the rates of some diagenetic reactions in the sediment. We present the first direct in situ measurements of the thickness of the diffusive sublayer for dissolved oxygen in the deep sea. The positions of 17 oxygen microelectrode profiles relative to the visible sediment/water inter-face reveal that the sublayer is 0.5–1.5 mm thick, with measurements ranging to 3.5 mm. The sublayer reduces the diffusive flux of oxygen into the sediments by 10% in these environments. Also, the diffusive flux of isotopically light carbon through the sublayer should cause the 13C content at the interface of typical deep-sea sediments to be 0.1%> lighter than the bottom-water value, setting a limit on the precision of the record of past bottom-water given by the carbon isotope composition of the shells of benthic foraminifera.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Keir, R. S. Am. J. Sci. 282, 193–236 (1982).

    Article  CAS  Google Scholar 

  2. Schink, D. R. & Guinasso, N. L. Jr in Fate of Fossil Fuel CO2 in the Ocean (eds Anderson, N. R. & Mlahof, A.) 375–400 (Plenum, New York, 1977).

    Book  Google Scholar 

  3. Archer, D. E., Emerson, S. & Reimers, C. E. Geochim. cosmochim. Acta (in the press).

  4. Boudreau, B. P. Am. J. Sci. 288, 777–797 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Jørgensen, B. B. & Revsbech, N. P. Limnol. Oceanogr. 30, 111–122 (1985).

    Article  ADS  Google Scholar 

  6. Jahnke, R. A. & Christiansen, M. B. Deep Sea Res. 36, 625–638 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Berelson, W. M. et al. Mar. Tech. Soc. J. 21, 26–32 (1987).

    Google Scholar 

  8. Santschi, P. H., Bower, P., Nyffeler, U. P., Azevedo, A. & Broecker, W. S. Limnol. Oceanogr. 28, 899–912 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Boudreau, B. P. & Guinasso, N. L. Jr in The Dynamic Environment of the Ocean Floor (eds Fanning, K. A. & Manheim, F. T.) 115–145 (Lexington Books, Lexington, 1982).

    Google Scholar 

  10. Wimbush, M. & Munk, W. in The Sea Vol. 4 Pt. 1 (ed. Maxwell, A. E.) 731–758 (1970).

    Google Scholar 

  11. Balistrieri, L. S. & Murray, J. W. Geochim. cosmochim. Acta 50, 2235–2243 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Dawson, D. A. & Trass, O. Int. J. Heat Mass Transfer 15, 1317–1336 (1972).

    Article  CAS  Google Scholar 

  13. Smith, K. L. Jr, Carlucci, A. F., Jahnke, R. A. & Craven, D. B. Deep Sea Res. 34, 185–211 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Smith, C. R., Jumars, P. A. & DeMaster, D. J. Nature 323, 251–253 (1986).

    Article  ADS  Google Scholar 

  15. Carpenter, R. Deep Sea Res. 34, 881–896 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Krone, R. B. in Lecture Notes on Coastal and Estuarine Studies Vol. 14 (ed. Mehta, A. J.) 66–84 (Springer, Berlin, 1986).

    Google Scholar 

  17. Emerson, S. & Hedges, J. I. Paleoceanography 3, 621–634 (1988).

    Article  ADS  Google Scholar 

  18. Tendall, O. S. & Hessler, R. R. Galathea Rep. 14, 165–194 (1977).

    Google Scholar 

  19. Lutze, G. F. & Thiel, H. in Berichte aus dem Sonderforschungsbereich (eds Altenbrach, A. V., Lutze, G. F. & Weinholz, P.) 313, 17–30 (Christian-Albrechts-Universität zu Kiel, 1987).

    Google Scholar 

  20. Shackleton, N. J. in Fate of Fossil Fuel CO2 in the Oceans (eds Anderson, N. R. & Malahof, A.) 401–428 (Plenum, New York, 1977).

    Book  Google Scholar 

  21. Boyle, E. A. & Keigwin, L. D. Science 218, 784–787 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Helder, W. & Bakker, J. F. Limnol. Oceanogr. 30, 1106–1109 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Drake, D. E. in Suspended Solids in Water (ed. Gibbs, R. J.) 133–153 (Plenum, New York, 1974).

    Book  Google Scholar 

  24. Emerson, S. E. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. & Broecker, W.) 78–86 (American Geophysical Union, Washington, D.C., 1985).

    Google Scholar 

  25. Andrews, D. & Bennett, A. Geochim. cosmochim. Acta 45, 2169–2175 (1981).

    Article  ADS  CAS  Google Scholar 

  26. McCorkle, D. C., Emerson, S. R. & Quay, P. D. Earth planet Sci. Lett. 74, 13–26 (1985).

    Article  ADS  CAS  Google Scholar 

  27. McCorkle, D. C. & Emerson, S. R. Geochim. cosmochim. Acta 52, 1169–1178 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archer, D., Emerson, S. & Smith, C. Direct measurement of the diffusive sublayer at the deep sea floor using oxygen microelectrodes. Nature 340, 623–626 (1989). https://doi.org/10.1038/340623a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340623a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing