Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global coupling of Earth surface topography with hotspots, geoid and mantle heterogeneities

Abstract

REMARKABLE global correlations exist between the Earth's gravity field (the geoid), hotspot distribution and lower-mantle heterogeneities. The geoid has two conspicious long-wavelength highs centred on the Equator 180° apart ('degree 2 pattern'), which contain most of the world's hotspots1-4. Seismic tomography of the lower mantle has revealed that low-velocity, presumably hot, regions are positively correlated with hotspot concentration and geoid highs4-7. In a viscous, convective Earth, correspondence between geoid highs and hot (low-density) mantle implies dynamical uplift of mantle boundaries, particularly the Earth's surface8,9. The gravitational effect of the surface deformation caused by the convective flow is opposite in sign and comparable in magnitude to that arising from the deep density contrast; geoid anomalies result from these mutually opposing contributions in a manner that depends critically on the dynamics of the mantle, that is, on viscosity stratification and style of convection. Here we show that the global surface topography, once corrected for shallow density variations inside the lithosphere, presents a strong degree 2 pattern, with uplifted regions well correlated with hotspot concentration, geoid highs and hot lower mantle. This long-wavelength topography probably represents the dynamic response of the Earth's surface to mantle convection; used together with geoid and seismic velocity anomalies, it should provide an important constraint on convection models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chase, C. G. Nature 282, 464–468 (1979).

    Article  ADS  Google Scholar 

  2. Crough, S. T. & Jurdy, D. M. Earth planet. Sci. Lett. 48, 15–22 (1980).

    Article  ADS  Google Scholar 

  3. Anderson, D. L. Nature 297, 391–393 (1982).

    Article  ADS  Google Scholar 

  4. Richards, M. A. & Hager, B. H. J. geophys. Res. 93, 7690–7708 (1988).

    Article  ADS  Google Scholar 

  5. Richards, M. A. & Hager, B. H. in The Physics of the Planets 247–272 (Wiley, New York, 1988).

    Google Scholar 

  6. Dziewonski, A. M. J. geophys. Res. 89, 5929–5952 (1984).

    Article  ADS  Google Scholar 

  7. Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. & Dziewonski, A. M. Nature 313, 541–545 (1985).

    Article  ADS  Google Scholar 

  8. Richards, M. A. & Hager, B. H. J. geophys. Res. 89, 5987–6002 (1984).

    Article  ADS  Google Scholar 

  9. Ricard, Y., Fleitout, L. & Froidevaux, C. Ann. Geophys. 2, 267–286 (1984).

    ADS  Google Scholar 

  10. Woodhouse, J. H. & Dziewonski, A. M. J. geophys. Res. 89, 5953–5986 (1984).

    Article  ADS  Google Scholar 

  11. Forte, A. M. & Peltier, W. R. J. geophys. Res. 92, 3645–3679 (1987).

    Article  ADS  Google Scholar 

  12. Parsons, B. & Sclater, J. G. J. geophys. Res. 82, 803–827 (1977).

    Article  ADS  Google Scholar 

  13. Hayes, D. E. J. geophys. Res. 93, 2937–2954 (1988).

    Article  ADS  Google Scholar 

  14. Cazenave, A., Dominh, K., Allègre, C. J. & Marsh, J. G. J. geophys. Res. 91, 11439–11450 (1986).

    Article  ADS  Google Scholar 

  15. Cazenave, A., Dominh, K., Rabinowicz, M. & Ceuleneer, G. J. geophys. Res. 93, 8064–8077 (1988).

    Article  ADS  Google Scholar 

  16. Marsh, J. G. et al. J. geophys. Res. 93, 7690–7708 (1988).

    Article  Google Scholar 

  17. Monnereau, M. & Cazenave, A. Earth planet. Sci. Lett. 91, 179–197 (1988).

    Article  ADS  Google Scholar 

  18. McNutt, M. K. & Fischer, K. M. in Seamounts, Islands, and Atolls Geophys. Monogr. 43 (American Geophysical Union, Washington DC, 1987).

    Google Scholar 

  19. Calmant, S. & Cazenave, A. Nature 328, 236–238 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazenave, A., Souriau, A. & Dominh, K. Global coupling of Earth surface topography with hotspots, geoid and mantle heterogeneities. Nature 340, 54–57 (1989). https://doi.org/10.1038/340054a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340054a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing