Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse

Abstract

COMPARED with the variety of neuromodulatory agents acting through second messenger systems, the number of fast neurotran-smitters which directly activate ion channels is limited. Thus, synaptic receptors that act as ligand-gated ion channels have been firmly established only for acetylcholine, glycine, GABA and glutamate, with the first three of these belonging to the same molecular superfamily1. Recently, however, a possible addition to this list has been suggested as a result of evidence implicating histamine as the neurotransmitter released by a variety of arthropod photoreceptors2–7. Neurotransmission at this synapse has been studied extensively, particularly in the fly8–12. The post-synaptic elements, large monopolar cells, respond to light with a rapid, chloride-mediated hyperpolarization8,13,14 that can be mimicked by the application of histamine3. In this report I document some basic properties of the histamine receptors present on large monopolar cells isolated from blowfly optic lobes. The receptor is a ligand-gated chloride channel showing properties consistent with its presumed role of mediating neurotransmission at the photoreceptor synapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barnard, E. A., Darlinson, M. G. & Seeburg, P. Trends Neurosci. 10, 502–509 (1987).

    Article  CAS  Google Scholar 

  2. Elias, M. S. & Evans, P. D. J. Neurochem. 41, 562–568 (1983).

    Article  CAS  Google Scholar 

  3. Hardie, R. C. J. comp. Physiol. 161, 201–213 (1987).

    Article  CAS  Google Scholar 

  4. Hardie, R. C. J. exp. Biol. 138, 221–241 (1988).

    CAS  Google Scholar 

  5. Simmons, P. J. & Hardie, R. C. J. exp. Biol. 138, 205–220 (1988).

    CAS  Google Scholar 

  6. Stuart A. E. & Callaway, J. C. Invest. Ophthalmol. Vis. Sci. 29, 223a (1988).

    Google Scholar 

  7. Nässel, D. R., Holmqvist, M. H., Hardie, R. C., Hakånson, R. & Sundler, F. Cell Tissue Res. 253, 639–646 (1988).

    Article  Google Scholar 

  8. Laughlin, S. B. & Hardie, R. C. J. comp. Physiol. 128, 319–340 (1978).

    Article  Google Scholar 

  9. Laughlin, S. B. Trends Neurosci. 10, 478–483 (1987).

    Article  Google Scholar 

  10. Laughlin, S. B. Blakeslee, B. & Howard, J. Proc. R. Soc. Lond. B 231, 437–467 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Shaw, S. R. J. exp. Biol. 112, 225–252 (1984).

    CAS  PubMed  Google Scholar 

  12. Nicol, D. & Meinertzhagen, I. A. J. comp. Neurol. 207, 29–44 (1982).

    Article  CAS  Google Scholar 

  13. Autrum, H., Zettler, F. & Järvilehto, M. Z. vergl. Physiol. 70, 414–424 (1970).

    Article  Google Scholar 

  14. Zettler, F. & Straka, H. J. exp Biol. 131, 435–438 (1988).

    Google Scholar 

  15. Laughlin, S. B. & Osorio D. J. exp. Biol. (in the press).

  16. McClintock, T. S. Biol. Bull. 175, 307a (1988).

    Google Scholar 

  17. Frizell, R. A. Trends Neurosci. 10, 190–193 (1987).

    Article  Google Scholar 

  18. Funder, J. W. News in Physiol. Sci. 2, 231–232 (1987).

    Google Scholar 

  19. Magleby, K. L. & Stevens, C. F. J. Physiol. 223, 151–171 (1972).

    Article  CAS  Google Scholar 

  20. Colquhoun, D. & Sakmann B. J. Physiol. 369, 501–557 (1985).

    Article  CAS  Google Scholar 

  21. Sakmann, B., Patlak, J. & Neher E. Nature 286, 71–73 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Pirvola, U., Tuomisto, L., Yamatodani, A. & Panula, P. J. comp. Neurol. 276, 514–526 (1988).

    Article  CAS  Google Scholar 

  23. Battelle, B.-A. et al. Invest. Ophthalmol. Vis. Sci. 30, (in the press).

  24. Fenwick, E. M., Marty, A. & Neher, E. J. Physiol. 331, 577–597 (1985).

    Article  Google Scholar 

  25. Pinnock, R. D. & Sattelle, D. B. J. Neurosci. Meth. 20, 195–202 (1987).

    Article  CAS  Google Scholar 

  26. Strausfeld, N. J. Z. Zellforsch. 121, 377–441 (1971).

    Article  Google Scholar 

  27. Boschek, B. Z. Zellforsch. 118, 369–409 (1971).

    Article  CAS  Google Scholar 

  28. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. gen. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  29. Colquhoun, D. & Hawkes, A. G. in Single channel Recording (eds Sakmann, B. & Neher, E.) 135–175 (1983).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardie, R. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339, 704–706 (1989). https://doi.org/10.1038/339704a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339704a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing