Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vitro correction of G o T mispairs to G o C pairs in nuclear extracts from human cells

Abstract

IN differentiated cells, only a specific subset of genes is expressed. Recently, several genes have been shown to be transcriptionally inactivated by methylation of cytosine residues, mainly within their promoter sequences1–4. Spontaneous hydrolytic deamination of 5-methylcytosine to thymine5, which has been estimated to generate up to 12 G-T mismatched base pairs in the human genome per day6,7, could have a deleterious effect on the expression of such genes. We recently reported that mammalian cells possess a specific repair pathway, which counteracts the mutagenic effects of this deamination by correcting G ṁ T mismatches almost exclusively to G ṁ C pairs8,9. We show here that, in nuclear extracts from HeLa cells, this repair is mediated by excision of the aberrant thymidine monophosphate residue, followed by gap-filling to generate a G ṁ C pair. We also provide preliminary evidence that the initial step of this process involves a DNA glycosylase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bird, A. P. Nature, 321, 209–213 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Doerfler, W. et al. Prog. clin. biol. Res. 198, 133–155 (1985).

    CAS  PubMed  Google Scholar 

  3. Gardiner-Garden, M. & Frommer, M. J. molec. Biol. 196, 261–282 (1987).

    Article  CAS  Google Scholar 

  4. Ben-Hattar, J. & Jiricny, J. Gene 65, 219–227 (1988).

    Article  CAS  Google Scholar 

  5. Riggs, A. D. & Jones, P. A. Adv. Cancer Res. 40, 1–30 (1983).

    Article  CAS  Google Scholar 

  6. Lindahl, T. A. Rev. Biochem. 51, 61–87 (1982).

    Article  CAS  Google Scholar 

  7. Wang, R. Y.-H., Kuo, K. C., Gehrke, C. W., Huang, L.-H. & Ehrlich, M. Biochim. biophys. Acta 697, 371–377 (1982).

    Article  CAS  Google Scholar 

  8. Brown, T. C. & Jiricny, J. Cell 50, 945–950 (1987).

    Article  CAS  Google Scholar 

  9. Brown, T. C. & Jiricny, J. Cell 54, 705–711 (1988).

    Article  CAS  Google Scholar 

  10. Jiricny, J., Wood, S. G., Martin, D. & Ubasawa, A. Nucleic Acids Res. 14, 6579–6590 (1986).

    Article  CAS  Google Scholar 

  11. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564, (1977).

    Article  ADS  CAS  Google Scholar 

  12. Jiricny, J., Hughes, M., Corman, N. & Rudkin, B. B. Proc. natn. Acad. Sci. U.S.A. 85, 8860–8864, (1988).

    Article  ADS  CAS  Google Scholar 

  13. Modvich, P. A. Rev. Biochem 56, 435–466 (1987).

    Article  Google Scholar 

  14. Lieb, M. Molec. Gen. Genet. 199, 465–470 (1985).

    Article  CAS  Google Scholar 

  15. Zell, R. & Fritz, H.-J. EMBO J. 6, 1809–1815 (1987).

    Article  CAS  Google Scholar 

  16. Jones, M., Wagner, R. & Radman, M. J. Molec. Biol. 194, 155–159 (1987).

    Article  CAS  Google Scholar 

  17. Lu, A-L., Chang, D-Y. Cell 54, 805–812, (1988).

    Article  CAS  Google Scholar 

  18. Au, K. G., Cabrera, M., Miller, J. H. & Modrich, P. Proc. natn. Acad. Sci. U.S.A. 85, 9163–9166, (1988).

    Article  ADS  CAS  Google Scholar 

  19. Dignam, D. J., Lebovitz, R. M. & Roeder, R. G. Nucleic Acids Res. 11, 1475–1489, (1983).

    Article  CAS  Google Scholar 

  20. Krämer, A. and Keller, W. Meth. Enzymol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiebauer, K., Jiricny, J. In vitro correction of G o T mispairs to G o C pairs in nuclear extracts from human cells. Nature 339, 234–236 (1989). https://doi.org/10.1038/339234a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339234a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing