Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A retina with at least ten spectral types of photoreceptors in a mantis shrimp

Abstract

STOMATOPOD crustaceans, commonly named mantis shrimps, have compound eyes of unique design. A central band composed of six parallel rows of ommatidia separates two peripheral ommatidial groups, and all three regions view the same area of visual space1–3. In the central bands of members of the stomatopod superfamily Gonodactyloidea, four of the ommatidial rows are built of tiers of photoreceptors; in two of these rows, the photoreceptors themselves contain coloured filters4. Such a design could in principle produce many spectral classes of photoreceptors using only a single visual pigment4,5. We measured the absorption spectra of the coloured filters and the visual pigments in frozen sections of retinae of a typical species, Pseudosquilla ciliata, using end-on microspectrophotometry. The retina contains not one, but as many as ten visual pigments, each in a distinct photoreceptor class, having maximum absorbances at wavelengths from 400 to 539 nm. Because of the unique anatomy of stomatopod eyes, ten or more spectral types of photoreceptors exist in this species.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Horridge, G. A. Phil. Trans. R. Soc. 285, 1–59 (1978).

    CAS  Article  Google Scholar 

  2. 2

    Schiff, H. & Candone, P. Comp. Biochem. Physiol. 83A, 445–455 (1986).

    Article  Google Scholar 

  3. 3

    Cronin, T. W. J. crust. Biol. 6, 1–23 (1986).

    Article  Google Scholar 

  4. 4

    Marshall, N. J. Nature 333, 557–560 (1988).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Hardie, R. C. Nature 333, 499–500 (1988).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Stavenga, D. G. & Schwemer, J. in Photoreception and Vision in Invertebrates (ed. Ali, M. A. ) 11–61 (Plenum, New York, 1984).

    Book  Google Scholar 

  7. 7

    Goldsmith, T. H. Vision Res. 18, 463–473 (1978).

    CAS  Article  Google Scholar 

  8. 8

    Cronin, T. W. J. comp. Physiol. A156, 679–687 (1985).

    CAS  Article  Google Scholar 

  9. 9

    Cronin, T. W. & Forward, R. B. Jr, J. comp. Physiol. A162, 463–478 (1988).

    CAS  Article  Google Scholar 

  10. 10

    Lipetz, L. E. & Cronin, T. W. Vision Res. 28, 1083–1093 (1988).

    CAS  Article  Google Scholar 

  11. 11

    Bruno, M. S., Barnes, S. N. & Goldsmith, T. H. J. comp. Physiol. 120, 123–142 (1977).

    CAS  Article  Google Scholar 

  12. 12

    Hiller-Adams, P., Widder, E. A. & Case, J. F. J. comp. Physiol. A163, 63–72 (1988).

    CAS  Article  Google Scholar 

  13. 13

    Avery, J. A., Bowmaker, J. K., Djamgoz, M. B. A. & Downing, J. E. G. J. Physiol., Lond. 334, 23P–24P (1983).

    Google Scholar 

  14. 14

    Hárosi, F. I. & Hashimoto, Y. Science 222, 1021–1023 (1983).

    ADS  Article  Google Scholar 

  15. 15

    Ohtsuka, T. J. comp. Neurol. 237, 145–154 (1985).

    CAS  Article  Google Scholar 

  16. 16

    Ohtsuka, T. Science 229, 874–877 (1985).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Jane, S. D. & Bowmaker, J. K. J. comp. Physiol. A162, 225–235 (1988).

    CAS  Article  Google Scholar 

  18. 18

    Cummins, D. R. & Goldsmith, T. H. J. comp. Physiol. 142, 199–202 (1981).

    Article  Google Scholar 

  19. 19

    Hardie, R. C. in Progress in Sensory Physiology Vol. 5 (ed. Ottoson, D.) 1–79 (Springer, Berlin, 1985).

    Book  Google Scholar 

  20. 20

    Arikawa, K., Inokuma, K. & Eguchi, E. Naturwissenschaften 74, 297–298 (1987).

    ADS  Article  Google Scholar 

  21. 21

    Caldwell, R. L. & Dingle, H. Naturwissenschaften 62, 214–222 (1975).

    ADS  Article  Google Scholar 

  22. 22

    Barlow, H. B. Vision Res. 22, 635–643 (1982).

    CAS  Article  Google Scholar 

  23. 23

    Bowmaker, J. K. Trends neurosci. 6(2), 41–43 (1983).

    Article  Google Scholar 

  24. 24

    Dingle, H. Crustaceana 7, 236–240 (1964).

    Article  Google Scholar 

  25. 25

    Bernard, G. D. J. opt. Soc. Am. A4, 123 (1987).

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cronin, T., Marshall, N. A retina with at least ten spectral types of photoreceptors in a mantis shrimp. Nature 339, 137–140 (1989). https://doi.org/10.1038/339137a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing