Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly efficient neutralization of HIV with recombinant CD4-immunoglobulin molecules

Abstract

THE human immunodeficiency virus type 1 (HIV-1) exploits the cell surface CD4 molecule to initiate the infection1–4 which can lead, eventually, to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope protein, gp120, interacts specificially with CD4 and soluble CD4 molecules have been shown to inhibit HIV infectivity in vitro5–9. Effective inhibition in vivo may, however, require more potent reagents. We describe here the generation of molecules which combine the specificity of CD4 and the effector functions of different immunoglobulin subclasses. Replacing the VH and CH1 domains of either mouse γ2a or µ. heavy chains with the first two N-terminal domains of CD4 results in molecules that are secreted in the absence of any immunoglobulin light chains. We find that the pentameric CD4–IgM chimaera is at least 1,000-fold more active than its dimeric CD4–IgG counterpart in syncytiurm inhibition assays and that effector functions, such as the binding of Fc receptors and the first component of the complement cascade (Clq), are retained. Similar chimaeric molecules, combining CD4 with human IgG were recently described by Capon et al.10, but these included the CH1 domain and did not bind Clq. Deletion of the CH1 domain may allow the association and secretion of heavy chains in the absence of light chains11, and we suggest that the basic design of our constructs may be generally and usefully applied.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dalgleish, A. et al. Nature 312, 763–766 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Klatzmann, D. et al. Nature 312, 767–768 (1984).

    Article  ADS  CAS  Google Scholar 

  3. McDougal, J. et al. J. Immun. 135, 3151–3162 (1985).

    CAS  PubMed  Google Scholar 

  4. Maddon, P. J. et al. Cell 47, 333–348 (1986).

    Article  CAS  Google Scholar 

  5. Smith, D. H. et al. Science 238, 1704–1707 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Fischer, R. A. et al. Nature 331, 76–78 (1988).

    Article  ADS  Google Scholar 

  7. Hussey, R. E. et al. Nature 331, 78–81 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Deen, K. C. et al. Nature 331, 82–84 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Traunecker, A., Lüke, W. & Karjalainen, K. Nature 331, 84–86 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Capon, D. J. et al. Nature 337, 525–531 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Seligmann, M., Mihaesco, E., Preud Homme, J. L., Danon, F. & Brouet, J. C. Immun. Rev. 48, 145–167 (1979).

    Article  CAS  Google Scholar 

  12. Classon, J. B., Tsagarotos, J., McKenzie, I. F. & Walter, I. D. Proc. natn. Acad. Sci. U.S.A. 83, 4499–4503 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Traunecker, A., Dolder, B., Oliveri, F. & Karjalainen, K. Immun. Today 10, 29–32 (1989).

    Article  CAS  Google Scholar 

  14. Deisenhofer, Y. Biochemistry 20, 2361–2370 (1981).

    Article  CAS  Google Scholar 

  15. Duncan, A. R. & Winter, G. Nature 332, 738–740 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Duncan, A. R., Woof, J. M., Partridge, L. J., Burton, D. R. & Winter, G. Nature 332, 563–569 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Sodroski, J., Goh, W. C., Rosen, C., Campbell, K. & Haseltine, W. A. Nature 332, 470–474 (1986).

    Article  ADS  Google Scholar 

  18. Lifson, J. D. et al. Nature 323, 725–728 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Lasky, L. et al. Cell 50, 975–985 (1987).

    Article  CAS  Google Scholar 

  20. Hahn, B. H. et al. Proc. natn. Acad. Sci. U.S.A. 82, 4813–4817 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Wong-Staal, F. et al. Science 229, 759–762 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Alison, M., Wain-Hobson, S., Montagnier, L. & Sonigo, P. Cell 46, 63–74 (1986).

    Article  Google Scholar 

  23. Starcich, B. R. et al. Cell 45, 637–648 (1986).

    Article  CAS  Google Scholar 

  24. Gelderblom, H. R., Reupke, H. & Pauli, G. Lancet ii, 1016–1017 (1985).

    Article  Google Scholar 

  25. Schneider, J., Kaaden, O., Copeland, T. D., Oroszlan, S. & Hunsmann, G. J. J. gen. Virol. 67, 2533–2539 (1986).

    Article  CAS  Google Scholar 

  26. Lyerly, H. K., Matthews, T. J., Langlois, A. J., Bolognesi, D. P. & Weinhold, K. J. Proc. natn. Acad. Sci. U.S.A. 84, 4601–4605 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Weinhold, K. J. et al. Lancet ii, 902–905 (1988).

    Article  Google Scholar 

  28. Lanzavecchia, A., Roosnek, E., Gregory, T., Berman, P. & Abrignani, S. Nature 334, 530–534 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Siliciano, R. F. et al. Cell 54, 561–575 (1988).

    Article  CAS  Google Scholar 

  30. Hoas, I. G. & Walb, M. Nature 306, 387–289 (1984).

    Article  ADS  Google Scholar 

  31. Bole, D. G., Hendershot, L. M. & Kearney, L. F. Cell Biol. 102, 1558–1566 (1986).

    Article  CAS  Google Scholar 

  32. Traunecker, A., Dolder, B. & Karjalainen, K. Eur. J. Immun. 16, 851–854 (1986).

    Article  CAS  Google Scholar 

  33. Popovic, M., Samgadharan, M. G., Read, E. & Gallo, R. C. Science 224, 497–500 (1984).

    Article  ADS  CAS  Google Scholar 

  34. Schneider, J. et al. Virology 132, 1–11 (1984).

    Article  CAS  Google Scholar 

  35. Miyoshi, I., et al. Nature 294, 770–771 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traunecker, A., Schneider, J., Kiefer, H. et al. Highly efficient neutralization of HIV with recombinant CD4-immunoglobulin molecules. Nature 339, 68–70 (1989). https://doi.org/10.1038/339068a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339068a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing