Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis

Abstract

Three of the four yeast ubiquitin genes encode hybrid proteins which are cleaved to yield ubiquitin and previously unidentified ribosomal proteins. The transient association between ubiquitin and these proteins promotes their incorporation into nascent ribosomes and is required for efficient ribosome biogenesis. These results suggest a novel 'chaperone' function for ubiquitin, in which its covalent association with other proteins promotes the formation of specific cellular structures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hershko, A., Ciechanover, A., Heller, H., Haas, A. L. & Rose, I. A. Proc. natn. Acad. Sci. U.S.A. 77, 1783–1786 (1980).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Finley, D., Ciechanover, A. & Varshavsky, A. Cell 37, 43–55 (1984).

    CAS  Article  Google Scholar 

  3. 3

    Ciechanover, A., Finley, D. & Varshavsky, A. Cell 37, 57–66 (1984).

    CAS  Article  Google Scholar 

  4. 4

    Jentsch, S., McGrath, J. P. & Varshavsky, A. Nature 329, 131–134 (1987).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Goebl, M. G. et al. Science 241, 1331–1335 (1988).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Kulka, R. G. et al. J. biol. Chem. 263, 15726–15731 (1988).

    CAS  PubMed  Google Scholar 

  7. 7

    Schlesinger, M. J. & Bond, U. Oxford Surveys on Eukaryotic genes 4, 77–91 (1987).

    CAS  PubMed  Google Scholar 

  8. 8

    Finley, D., Özkaynak, E. & Varshavsky, A. Cell 48, 1035–1046 (1987).

    CAS  Article  Google Scholar 

  9. 9

    Tanaka, K., Matsumoto, K. & Toh-e, A. EMBO J. 7, 495–502 (1988).

    CAS  Article  Google Scholar 

  10. 10

    Treger, J. M., Heichman, K. A. & McEntee, K. Molec. cell. Biol. 8, 1132–1136 (1988).

    CAS  Article  Google Scholar 

  11. 11

    Goff, S. A., Voeilmy, R. & Goldberg, A. in Ubiquitin (ed. Rechsteiner, M.) 207–238 (Plenum, New York, 1988).

    Book  Google Scholar 

  12. 12

    Hershko, A. J. biol. Chem. 263, 15237–15240 (1988).

    CAS  PubMed  Google Scholar 

  13. 13

    Varshavsky, A., Bachmair, A., Finley, D., Gonda, D. & Wünning, I. in Ubiquitin (ed. Rechsteiner, M.) 287–324 (Plenum, New York, 1988).

    Book  Google Scholar 

  14. 14

    Finley, D. & Varshavsky, A. Trends Biochem. Sci. 10, 343–346 (1985).

    CAS  Article  Google Scholar 

  15. 15

    Pickart, C. M. in Ubiquitin (ed. Rechsteiner, M.) 77–100 (Plenum, New York, 1988).

    Book  Google Scholar 

  16. 16

    Bonner, W. M., Hatch, C. L. & Wu, R. S. in Ubiquitin (ed. Rechsteiner, M.) 157–172 (Plenum, New York, 1988).

    Book  Google Scholar 

  17. 17

    Ball, E. et al. Cell 51, 221–228 (1987).

    CAS  Article  Google Scholar 

  18. 18

    Siegelman, M. et al. Science 231, 823–829 (1986).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Yarden, T. et al. Nature 323, 226–232 (1986).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Leung, D. W. et al. Nature 330, 537–543 (1987).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Perry, G., Friedman, R., Shaw, G. & Chau, V. Proc. natn. Acad. Sci. U.S.A. 84, 3033–3036 (1987).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Manetto, V. et al. Proc. natn. Acad. Sci. U.S.A. 85, 4501–4505 (1988).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Chau, V. et al. Science (in the press).

  24. 24

    Özkaynak, E., Finley, D., Solomon, M. J. & Varshavsky, A. EMBO J. 6, 1429–1439 (1987).

    Article  Google Scholar 

  25. 25

    Finley, D. et al. in Ubiquitin (ed. Rechsteiner, M.) 39–75 (Plenum, New York, 1988).

  26. 26

    Ecker, D. J., Khan, M. I., Marsh, J., Butt, T. R. & Crooke, S. T. J. biol. Chem. 262, 3524–3527 (1987).

    CAS  PubMed  Google Scholar 

  27. 27

    Bitter, G. A. & Egan, K. M. Gene 69, 193–207 (1988).

    CAS  Article  Google Scholar 

  28. 28

    Lund, P. K. et al. J. biol. Chem. 260, 7609–7613 (1985).

    CAS  PubMed  Google Scholar 

  29. 29

    Warner, J. R. in The Molecular Biology of the Yeast. Saccharomyces cerevisiae: Metabolism and gene Expression (eds Strathern, J., Jones, E. & Broach, J.) 529–560 (Cold Spring Harbor Laboratory, New York, 1981).

    Google Scholar 

  30. 30

    Planta, R. J. & Raué, H. A. Trends Genet. 4, 64–68 (1988).

    CAS  Article  Google Scholar 

  31. 31

    Carter, C. J., Cannon, M. & Jiménez, A. Eur. J. Biochem. 107, 173–183 (1980).

    CAS  Article  Google Scholar 

  32. 32

    van Holde, K. E. & Hill, W. E. in Ribosomes (eds Nomura, M., Tissieres, A. & Lengyel, P.) 53–91 (Cold Spring Harbor Laboratory, New York, 1974).

    Google Scholar 

  33. 33

    Gill, G. & Ptashne, M. Nature 334, 721–724 (1988).

    ADS  CAS  Article  Google Scholar 

  34. 34

    Tollervey, D. EMBO J. 6, 4169–4175 (1987).

    CAS  Article  Google Scholar 

  35. 35

    Munro, S. & Pelham, H. R. B. Cell 46, 291–300 (1986).

    CAS  Article  Google Scholar 

  36. 36

    Bachmair, A., Finley, D. & Varshavsky, A. Science 234, 179–186 (1986).

    ADS  CAS  Article  Google Scholar 

  37. 37

    Redman, K. & Rechsteiner, M. Nature (in the press).

  38. 38

    Blomstrom, D. C., Fahey, D., Kutney, R., Korant, B. D. & Knight, E. Jr J. Biol. Chem. 261, 8811–8816 (1986).

    CAS  PubMed  Google Scholar 

  39. 39

    Haas, A. L., Ahrens, P., Bright, P. M. & Ankel, H. J. biol. Chem. 262, 11315–11323 (1987).

    CAS  PubMed  Google Scholar 

  40. 40

    Toniolo, D., Persico, M. & Alcalay, M. Proc. natn. Acad. Sci. U.S.A. 85, 851–855 (1988).

    ADS  CAS  Article  Google Scholar 

  41. 41

    Clarke, L. E. et al. Nature 337, 709–716 (1989).

    Article  Google Scholar 

  42. 42

    Butt, T. R., Khan, M. I., Marsh, J., Ecker, D. J. & Crooke, S. T. J. biol. Chem. 263, 16364–16371 (1988).

    CAS  PubMed  Google Scholar 

  43. 43

    Ellis, J. Nature 328, 378–379 (1987).

    ADS  CAS  Article  Google Scholar 

  44. 44

    Hemmingsen, S. M. et al. Nature 333, 330–334 (1988).

    ADS  CAS  Article  Google Scholar 

  45. 45

    Laemmli, U. K. & Favre, M. J. molec. Biol. 80, 575–599 (1973).

    CAS  Article  Google Scholar 

  46. 46

    Sherman, F., Fink, G. R. & Hicks, J. B. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, New York, 1986).

    Google Scholar 

  47. 47

    Maniatis, T., Fritsch, E. F., & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  48. 48

    Vieira, J. & Messing, J. Gene 19, 259–268 (1982).

    CAS  Article  Google Scholar 

  49. 49

    Hill, J. E., Myers, A. M., Koerner, T. J. & Tzagoloff, A. Yeast 2, 163–167 (1986).

    CAS  Article  Google Scholar 

  50. 50

    Parent, S. A., Fenimore, C. M. & Bostian, K. A. yeast 1, 83–138 (1985).

    CAS  Article  Google Scholar 

  51. 51

    Guarente, L., Yocum, R. R. & Gifford, P. Proc. natn. Acad. Sci. U.S.A. 79, 7410–7414 (1982).

    ADS  CAS  Article  Google Scholar 

  52. 52

    Sprague, G. F. Jr, Jensen, R. & Hershkowitz, I. Cell 32, 409–415 (1983).

    CAS  Article  Google Scholar 

  53. 53

    Warner, J. R., Mitra, G., Schwindinger, W. F., Studeny, M. & Fried, H. M. Molec. cell. Biol. 5, 1512–1521 (1985).

    CAS  Article  Google Scholar 

  54. 54

    Rotenberg, M. O., Moritz, M. & Woolford, J. L. Jr Genes Dev. 2, 160–172 (1988).

    CAS  Article  Google Scholar 

  55. 55

    Munro, S. thesis, Univ. Cambridge (1987).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Finley, D., Bartel, B. & Varshavsky, A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394–401 (1989). https://doi.org/10.1038/338394a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing