Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial

Abstract

Previous models of physical and biogeochemical controls of the evolution of atmospheric CO2 and climate over hundreds of millions of years have neglected the effect of variations in the balance between shallow-ocean and deep-ocean carbonate deposition. This is important because the relative proportions of carbonate burial in the two reservoirs have changed over time. Here I set up a model of the carbonate-silicate geochemical cycle that distinguishes carbonate masses produced by the two types of burial and shows that reasonable increases in deep-ocean burial could produce substantial warmings over a few hundred million years. The model includes exchanges between crust and mantle; transients from burial shifts are found to be sensitive to the fraction of non-degassed carbonates subducted into the mantle. Without the habitation of the open ocean by plankton such as foraminifera and coccolithophores, today's climate would be substantially colder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walker, J. C. G., Hays, P. B. & Kasting, J. F. J. geophys. Res. 86, 9776–9782 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Berner, R. A., Lasaga, A. C. & Garrels, R. M. Am. J. Sci. 283, 641–643 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Lasaga, A. C., Berner, R. A. & Garrels, R. M. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. 32, (eds Sundquist, E. T. & Broecker, W. S.) 397–411 (Am. geophys. Un., Washington, 1985).

    Google Scholar 

  4. Budyko, M. I., Ronov, A. B. & Yanshin, A. L. History of the Earth's Atmosphere (Springer, Berlin, 1987).

    Book  Google Scholar 

  5. Volk, T. Am. J. Sci. 287, 763–779 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Volk, T. Geology 17, 107–110 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Kasting, J. F. Am. J. Sci. 284, 1175–1182 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Fischer, A. G. in Patterns of Change in Earth Evolution (eds Holland, H. D. & Trendall, A. F.) 145–157 (Springer, Berlin, Heidelberg, New York and Tokyo, 1984).

    Book  Google Scholar 

  9. Wilkinson, B. H. & Walker, J. C. G. Am. J. Sci. (in the press).

  10. Hay, W. W. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. 32, (eds Sundquist, E. T. & Broecker, W. S.) 573–583 (Am. geophys. Un., Washington, 1985).

    Google Scholar 

  11. Southam, J. R. & Hay, W. W. J. geophys. Res. 82, 3825–3842 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Javoy, M., Pineau, F. & Allègre, C. J. Nature 300, 171–173 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Des Marais, D. J. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present Geophys. Monogr. 32, (eds Sundquist, E. T. & Broecker, W. S.) 602–611 (Am geophys. Un., Washington, 1985).

    Google Scholar 

  14. Van Gross, K. J. geophys. Res. 93, 8952–8958 (1988).

    Article  ADS  Google Scholar 

  15. Staudigel, H., Hart, S., Smith, B. M. & Schmincke, H.-U. Eos 69, 377 (1988).

    Google Scholar 

  16. Crowley, T. J. Rev. Geophys. Space Phys. 21, 828–877 (1983).

    Article  ADS  Google Scholar 

  17. Crowley, T. J., Short, D. A., Mengel, J. G. & North, G. R. Science 231, 579–584 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Genthon, C. et al. Nature 329, 414–418 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Gaffin, S. Am. J. Sci. 287, 596–611 (1987).

    Article  ADS  Google Scholar 

  20. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes (Cambridge Univ. Press, 1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volk, T. Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial. Nature 337, 637–640 (1989). https://doi.org/10.1038/337637a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337637a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing