Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ubiquitous nature of ambient metastable aerosol

Abstract

The potential for atmospheric aerosol particles to exist as metastable aqueous droplets instead of in their thermodynamically favoured crystalline solid phase has many implications for atmospheric physics and chemistry. Aqueous droplets are larger than their dry counterparts1 and generally scatter more light2,3. Also, the existence of an aqueous phase influences the oxidation, equilibrium vapour pressure and mass-transfer kinetics of trace gases4–9. Here we report observations at three urban and rural sites, showing that metastable droplets existed more than 50% of the time when the ambient relative humidity was between 45 and 75%. At one site, more than 10% of the aerosol's light-scattering coefficient was attributed to metastable liquid H2O when the relative humidity was greater than 55%. These results indicate that metastable droplets are ubiquitous in nature, although the full ramifications of these observations are still unclear.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Orr, C., Hurd, F. K. & Corbett, W. J. J. Colloid Sci. 13, 472–482 (1958).

    Article  CAS  Google Scholar 

  2. Toon, O. B. & Pollack, J. B. J. appl. Met. 15, 225–246 (1976).

    Article  CAS  Google Scholar 

  3. Sloane, C. S. Atmos. Envir. 18, 871–878 (1984).

    Article  Google Scholar 

  4. Larson, T. V. & Taylor, G. S. Atmos. Envir. 17, 2489–2495 (1983).

    Article  CAS  Google Scholar 

  5. Freiberg, J. Envir. Sci. Technol. 8, 731–734 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Cadle, R. D. & Robbins, R. C. Discuss. Faraday Soc. 30, 155–166 (1961).

    Article  Google Scholar 

  7. Brock, J. R. & Durham, J. L. in SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations (ed. Calvert, J. G.) 209–249 (Ann Arbor Science, Boston, 1984).

    Google Scholar 

  8. Hoffman, M. R. & Jacob, D. J. in SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations (ed. Calvert, J. G.) 101–172 (Ann Arbor Science, Boston, 1984).

    Google Scholar 

  9. Penkett, S. A., Jones, B. M. R., Brice, K. A. & Eggleton, A. E. J. Atmos. Envir. 13, 123–137 (1979).

    Article  CAS  Google Scholar 

  10. Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation 73 (Reidel, London, 1980).

    Google Scholar 

  11. Brosset, C. Atmos. Envir. 12, 25–38 (1978).

    Article  CAS  Google Scholar 

  12. Ono, A. Atmos. Envir. 12, 753–757 (1978).

    Article  CAS  Google Scholar 

  13. Dessens, H. Q. J. R. met. Soc. 75, 23–26 (1949).

    Article  ADS  Google Scholar 

  14. Junge, C. Air Chemistry and Radioactivity 133 (Academic Press, New York, 1963).

    Google Scholar 

  15. Winkler, P. Aerosol Sci. 4, 373–387 (1973).

    Article  ADS  CAS  Google Scholar 

  16. Hänel, G. Adv. Geophys. 3, 73–188 (1976).

    Article  ADS  Google Scholar 

  17. Tang, I. N. in Generation of Aerosols and Facilities for Exposure Experiments (ed. Willeke, K.) 153–167 (Ann Arbor Science, Ann Arbor, 1980).

    Google Scholar 

  18. Spann, J. F. & Richardson, C. B. Atmos. Envir. 19, 819–825 (1985).

    Article  CAS  Google Scholar 

  19. Larson, T. V., Ahlquist, N. C., Weiss, R. E., Covert, D. S. & Waggoner, A. P. Atmos. Envir. 16, 1587–1590 (1982).

    Article  Google Scholar 

  20. Rood, M. J., Covert, D. S. & Larson, T. V. Tellus 39B, 383–397 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Rood, M. J., Covert, D. S. & Larson, T. V. Aerosol Sci. Technol. 7, 57–65 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Malm, W. C. & Molenar, J. V. J. Air Pollut. Control Ass. 34 (9) 899–904 (1984).

    Article  Google Scholar 

  23. Ferek, R. J., Farber, R. J. & Bhardwaja, P. S. in Trans. Visibility Conf., Research and Policy Aspects (ed. Bhardwaja, P. S.) 57–75 (1987).

    Google Scholar 

  24. Larson, S. M. & Cass, G. R. Envir. Sci. Technol. (in the press).

  25. Waggoner, A. P. & Weiss, R. E. Atmos. Envir. 14, 623–626 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rood, M., Shaw, M., Larson, T. et al. Ubiquitous nature of ambient metastable aerosol. Nature 337, 537–539 (1989). https://doi.org/10.1038/337537a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337537a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing