Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary

Abstract

The normal, biologically productive ocean is characterized by a gradient of the 13C/12C ratio from surface to deep waters. Here we present stable isotope data from planktonic and benthic micro-fossils across the Cretaceous/Tertiary boundary in the North pacific, which reveal a rapid and complete breakdown in this biologically mediated gradient. The fluxes of barium (a proxy for organic carbon) and CaCO3 also decrease significantly at the time of the major marine plankton extinctions. The implied substantial reduction in oceanic primary productivity persisted for 0.5 Myr before the carbon isotope gradient was gradually re-established. In addition, the stable isotope and preservational data indicate that environmental change, including cooling, began at least 200 kyr before the Cretaceous/Tertiary boundary, and a peak warming of 3 °C occurred 600 kyr after the boundary event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Heath, G. R. et al. Init. Rep. DSDP 86 (1985).

  2. Monechi, S. Init. Rep. DSDP 86, 301–306 (1985).

    Google Scholar 

  3. Zachos, J. C. & Arthur, M. A. Paleoceanography 1, 5–26 (1986).

    Article  ADS  Google Scholar 

  4. Gerstel, J., Thunell, R. C., Zachos, J. C. & Arthur, M. A. Paleoceanography 1, 97–117 (1986).

    Article  ADS  Google Scholar 

  5. Smit, J. & Romein, A. J. T. Earth planet. Sci. Lett. 74, 155–170 (1985).

    Article  ADS  Google Scholar 

  6. Michel, H. V., Asaro, F., Alvarez, W. & Alvarez, L. W. Init. Rep. DSDP 86, 533–538 (1985).

    CAS  Google Scholar 

  7. Zachos, J. C., Arthur, M. A., Thunell, R. C., Williams, D. F. & Tappa, E. J. Init. Rep. DSDP 86, 513–532 (1985).

    CAS  Google Scholar 

  8. Broecker, W. S. & Peng, T. H. Tracers in the Sea (ELDIGIO, New York, 1982).

    Google Scholar 

  9. Hsu, K. J. & McKenzie, J. A. in The Carbon Cycle & Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 487–492 (Am. Geophys. Un., Washington DC, 1985).

    Google Scholar 

  10. Corliss, B. H. Nature 314, 435–438 (1985).

    Article  ADS  Google Scholar 

  11. McCorkle, D. C., Emerson, S. R. & Quay, P. D. Earth planet. Sci. Lett. 74, 13–26 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Thierstein, H. R. Soc. Econ. Paleontol. Miner. spec. Publn 32, 355–394 (1981).

    Google Scholar 

  13. Dehairs, F., Lambert, C. E., Chesselet, R. & Risler, N. Biogeochemistry 4, 119–139 (1987).

    Article  CAS  Google Scholar 

  14. Chan, L. H., Drummond, D., Edmond, J. M. & Grant, B. Deep Sea Res. 24, 613–649 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Dymond, J. Am. Geophys. Un. Ocean Sci Mtg (1986).

  16. Church, T. M. in Reviews in Mineralogy, Vol. 6 (ed. Burns, R. G.) 175–209 (Miner. Soc. Am., Washington DC, 1976).

    Google Scholar 

  17. Schmitz, B. Paleoceanography 2, 63–78 (1987).

    Article  ADS  Google Scholar 

  18. Haq, B. U., Hardenbol, J. & Vail, P. R. Science 235, 1156–1167 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Emerson, S. E., Bender, M. A. J. Mar. Res. 39, 139–162 (1981).

    CAS  Google Scholar 

  20. Gerstel, J., Thunell, R. & Ehrlich, R. Geology 15, 665–668 (1987).

    Article  ADS  Google Scholar 

  21. Doh, S-J., King, J. W. & Leinen, M. Paleoceanography 3, 89–112 (1988).

    Article  ADS  Google Scholar 

  22. Crowley, T. S. & North, G. R. Science 240, 996–1002 (1988).

    Article  ADS  CAS  Google Scholar 

  23. McLean, D. M. Cret. Res. 6, 235–259 (1985).

    Article  CAS  Google Scholar 

  24. Kasting, J. F., Richardson, S. M., Pollack, J. B. & Toon, O. B. Am. J. Sci. 286, 361–389 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Rampino, M. & Volk, T. Nature 332, 63–65 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Caldeira, K. G., Rampino, M. R. & Zachos, J. C. Eos 69, 377 (1988).

    Google Scholar 

  27. Craig, H. Geochim. cosmochim. Acta. 12, 133–149 (1955).

    Article  ADS  Google Scholar 

  28. Bleil, U. Init. Rep. DSDP 86, 441–458 (1985).

    Google Scholar 

  29. Berggren, W. A., Kent, D. V., Flynn, J. J. & Van Couvering, J. A. Bull. geol. Soc. Am. 96, 1407–1418 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zachos, J., Arthur, M. & Dean, W. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337, 61–64 (1989). https://doi.org/10.1038/337061a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337061a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing