Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation in vitro of sequence-specific DNA binding by a human regulatory factor

An Erratum to this article was published on 10 November 1988

Abstract

The human heat-shock factor (HSF) regulates heat-shock genes in response to elevated temperature1–6. When human cells are heated to 43 °C, HSF is modified post-translationally from a form that does not bind DNA to a form that binds to a specific sequence (the heat-shock element, HSE7,8) found upstream of heat-shock genes6. To investigate the transduction of the heat signal to HSF, and more generally, how mammalian cells respond at the molecular level to environmental stimuli, we have developed a cell-free system that exhibits heat-induced activation of human HSF in vitro. Comparison of HSF activation in vitro and in intact cells suggests that the response of human cells to heat shock involves at least two steps. First, an ATP-independent, heat-induced alteration of HSF allows it to bind the HSE; the temperature at which activation occurs in vitro implies that a human factor directly senses temperature. Second, HSF is phosphorylated. It is possible that similar multi-step activation mechanisms play a role in the response of eukaryotic cells to a variety of environmental stimuli, and that these mechanisms evolved to increase the range and flexibility of the response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ritossa, F. M. Experimenlia 18, 571–572 (1962).

    Article  CAS  Google Scholar 

  2. Nover, L. Heal Shock Response of Eukaryolic Cells (Springer, Berlin, 1984).

    Google Scholar 

  3. Craig, E. A. CRC Crit. Rev. Biochem. 18, 239–280 (1985).

    Article  CAS  Google Scholar 

  4. Pelham, H. R. B. Trends Genet. 1, 31–35 (1985).

    Article  CAS  Google Scholar 

  5. Lindquist, S. A. Rev. Biochem. 55, 1151–1191 (1986).

    Article  CAS  Google Scholar 

  6. Kingston, R. E., Schuetz, T. J. & Larin, Z. Molec. cell. Biol. 7, 1530–1534 (1987).

    Article  CAS  Google Scholar 

  7. Pelham, H. R. B. & Bienz, M. EMBO J. 1, 1473–1477 (1982).

    Article  CAS  Google Scholar 

  8. Mirault, M.-E., Southgate, R. & Delwart, E. EMBO J. 1, 1279–1285 (1982).

    Article  CAS  Google Scholar 

  9. Yamamoto, K. R. A. Rev. Genet. 19, 209–252 (1985).

    Article  CAS  Google Scholar 

  10. Sen, R. & Baltimore, D. Cell 47, 921–928 (1986).

    Article  CAS  Google Scholar 

  11. Prywes, R. & Roeder, R. G. Cell 47, 777–784 (1986).

    Article  CAS  Google Scholar 

  12. Hayes, T. E., Kitchen, A. M. & Cochran, B. H. Proc. nat. Acad. Sci. U.S.A. 84, 1272–1276 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Zimarino, V. & Wu, C. Nature 327, 727–730 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Seguin, C. & Hamer, D. H. Science 235, 1383–1387 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Baeuerle, P. A. & Baltimore, D. Cell 53, 211–217 (1988).

    Article  CAS  Google Scholar 

  16. Sorger, P. K., Lewis, M. J. & Pelham, H. R. B. Nature 329, 81–84 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Nucleic Acids Res. 11, 1475–1589 (1983).

    Article  CAS  Google Scholar 

  18. Fried, M. & Crothcrs, D. M. Nucleic Acids Res. 9, 6505–6525 (1981).

    Article  CAS  Google Scholar 

  19. Siebenlist, U. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 77, 122–126 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Gilman, M. Z., Wilson, R. N. & Weinberg, R. A. Molec. cell. Biol. 6, 4305–4316 (1986).

    Article  CAS  Google Scholar 

  21. Anantham, J., Goldberg, A. L. & Voellmy, R. Science 232, 522–524 (1986).

    Article  ADS  Google Scholar 

  22. Finley, D., Ciechanover, A. & Varshavsky, A. Cell 37, 43–55 (1984).

    Article  CAS  Google Scholar 

  23. Golf, S. A. & Goldberg, A. L. Cell 41, 587–595 (1985).

    Article  Google Scholar 

  24. Munro, S. & Pelham, H. Nature 317, 477–478 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Wu, C. et al. Science 238, 1247–1253 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Verjee, Z. H. M. Eur. J. Biochem. 9, 439–444 (1969).

    Article  CAS  Google Scholar 

  27. Beckwith, J. & Zipser, D. The lactose operon (Cold Spring Harbor, New York, 1970).

    Google Scholar 

  28. Wurm, F. M., Gwinn, K. A. & Kingston, R. E. Proc. natn. Acad. Sci. U.S.A. 83, 5415–5418 (1986).

    Article  ADS  Google Scholar 

  29. Holmgren, R., Livak, K., Morimoto, R., Freund, R. & Meselson, M. Cell 18, 1359–1370 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, J., Schuetz, T. & Kingston, R. Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335, 372–375 (1988). https://doi.org/10.1038/335372a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335372a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing