Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An experimental determination of primary carbonatite magma composition

Abstract

Carbonatites are uncommon carbonate-rich rocks usually found in continental intra-plate regions and often associated with rifting. There has been much debate as to whether carbonatite magmas are primary melts derived from partial melting of mantle peridotite, or are formed by exsolution of an immiscible carbonate melt fraction from phonolitic or nephelinitic magmas. Our experiments on the phase relationships of carbonate and amphibole-bearing peridotite (containing 0.3% H2O and 0.5–2.5% CO2) show that sodic dolomitic carbonatite magma coexists with an amphibole lherzolite assemblage in a field ranging from 21 to 30 kbar and 930 to 1,080 °C, spanning a pressure and temperature interval between the solidus and the amphibole breakdown and melting curve. Thus primary carbonatite melts may occur under suitable geothermal conditions. The nature of the peridotite solidus and of the melting reactions differ considerably from published models1–3. The carbonatite melt composition, determined by a series of 'sandwich' experiments, was found to be rich in Na, Mg, Ca and Fe, with a small dissolved silicate content. This melt quenches to an assemblage of dolomite and Na–Mg carbonate minerals, producing textures similar to those preserved in samples from Oldoinyo Lengai4, Homa mountains, Tanzania5 and Kaiserstuhl, Germany6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Olafsson, M. & Eggler, D. H. Earth planet. Sci. Lett. 64, 205–315 (1983).

    Article  Google Scholar 

  2. Wyllie, P. J. Earth planet. Sci. Lett. 82, 391–397 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Eggler, D. H. Earth planet. Sci. Lett. 82, 398–400 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Dawson, J. B., Garson, M. S. & Roberts, B. Geology 15, 765–768 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Deans, T. & Roberts, B. J. geol. Soc. Lond. 141, 563–580 (1984).

    Article  CAS  Google Scholar 

  6. Keller, J. J. Volcan. geolherm. Res. 9, 423–431 (1981).

    Article  ADS  CAS  Google Scholar 

  7. LeBas, M. J. Miner. Mag. 44, 133–140 (1981).

    Article  CAS  Google Scholar 

  8. McKie, D. & Frankis, E. J. Z. Kristallogr. 145, 73–95 (1977).

    Article  CAS  Google Scholar 

  9. Hay, R. L. Geology 11, 599–602 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Deines, P. & Gold, D. P. Geochim. cosmochim. Acta 37, 1709–1733 (1973).

    Article  ADS  CAS  Google Scholar 

  11. Sheppard, S. M. F. & Dawson, J. B. Phys. Chem. Earth 9, 747–763 (1975).

    Article  CAS  Google Scholar 

  12. Nelson, D. R., Chivas, A. R., Chappell, B. W. & McCulloch, M. T. Geochim. cosmochim. Acta 52, 1–17 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Lancelot, J. R. & Allegre, C. J. Earth planet. Sci. Lett. 22, 233–238 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Koster Van Groos, A. F. Am. J. Sci. 275, 163–185 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Donaldson, C. H. & Dawson, J. B. Contr. Miner. Petrol. 67, 139–149 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Freestone, I. C. & Hamilton, D. L. Contr. Miner. Petrol. 73, 105–117 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Twyman, J. D. & Gittins, J. in Alkaline Igneous Rocks (eds Fitton, J. G. & Upton, B. G. J.) 85–94 (Blackwell, Oxford, 1987).

    Google Scholar 

  18. Le Bas, M. J. in Alkaline Igneous Rocks (eds Fitton, J. G. & Upton, B. G. J.) 53–83 (Blackwell, Oxford, 1987).

    Google Scholar 

  19. Koster van Groos, A. T. & Wyllie, P. J. Am. J. Sci. 26, 932–967 (1968).

    Article  ADS  Google Scholar 

  20. Wyllie, P. J. & Tuttle, O. F. J. Petrology 1, 1–46 (1960).

    Article  ADS  CAS  Google Scholar 

  21. Wyllie, P. J. & Huang, W. L. Contr. Miner. Petrol. 54, 79–107 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Wyllie, P. J. in Magmatic Processes: Physicochemical Principles (ed. Mysen, B. O.) 107–119 (Geochem. Soc. spec. Publ. 1, 1987).

    Google Scholar 

  23. Eggler, D. H. Australian Journal of Earth Sciences spec. Publ. 14, IV International Kimberlite Conference (1988).

  24. Eggler, D. H. Am. J. Sci. 278, 305–343 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Brey, G. & Green, D. H. Contr. Miner. Petrol. 55, 217–230 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Brey, G., Brice, W. R., Ellis, D. J., Green, D. H., Harris, K. L. & Ryabchikov, I. D. Earth planet. Sci. Lett. 62, 63–74 (1983).

    Article  ADS  CAS  Google Scholar 

  27. Green, D. H. Earth planet. Sci. Lett. 19, 37–55 (1973).

    Article  ADS  CAS  Google Scholar 

  28. Eggler, D. H. & Baker, D. R. in Advances in Earth and Planetary Sciences: High Pressure Research in Geophysics 12 (eds Akimoto, S. & Manghnani, M. H.) 237–250 (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  29. Holloway, J. R. Geochim. cosmochim. Acta 37, 651–666 (1973).

    Article  ADS  CAS  Google Scholar 

  30. Green, D. H. Earth planet. Sci. Lett. 17, 456–465 (1973).

    Article  ADS  CAS  Google Scholar 

  31. Green, D. H. et al. Proc. Pacif. Rim Congr. A.I.M.M. Victoria 621–632 (1987).

  32. Hamilton, D. L., Freestone, I. C., Dawson, J. B. & Donaldson, C. H. Nature 279, 52–54 (1979).

    Article  ADS  CAS  Google Scholar 

  33. Wendlandt, R. F. & Harrison, W. J. Contr. Miner. Petrol. 69, 409–419 (1979).

    Article  ADS  CAS  Google Scholar 

  34. Taylor, W. R. & Green, D. H. Nature 332, 349–352 (1988).

    Article  ADS  CAS  Google Scholar 

  35. Green, D. H., Falloon, T. J. & Taylor, W. R. in Magmatic Processes: Physicochemical Principles (ed. Mysen, B. O.) 139–154 (The Geochemical Society, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, M., Green, D. An experimental determination of primary carbonatite magma composition. Nature 335, 343–346 (1988). https://doi.org/10.1038/335343a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335343a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing