Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Satellite detection of transient enhanced primary production in the western Mediterranean Sea

Abstract

Primary production by marine microalgae is believed to be a critical factor regulating atmospheric carbon dioxide levels and associated climatic changes1. Assessments of photosynthesis in the open ocean2–4, and the related export of organic carbon to the deep ocean (new or non-regenerative production5–7, vary by as much as an order of magnitude (refs 2 and 6, compare with refs 3–5 and 7). Discrepancies are attributed4,6–8 to different temporal and spatial scales reflected by instantaneous rate measurements, as opposed to seasonally averaged measurements based on subsurface changes in chemical tracers. Satellite extrapolations of primary production can be used to characterize and quantify temporal and spatial variability9–11. But time differentials between satellite and ship measurements, as well as regional and seasonal variations in empirical relationships, have so far limited the precision of such extrapolations9,12. We conducted extensive ship sampling of chlorophyll a and primary production in the western Mediterranean Sea contemporaneous with Nimbus-7 coastal zone colour scanner imagery. Our approach resulted in an empirical model for estimating integrated water-column primary production from satellite imagery. Precision was adequate to resolve short-term fluctuations in primary production associated with a meso-scale circulation feature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sarmiento, J. L. & Toggweiler, J. R. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  3. Schulenberger, E. & Reid, J. L. Deep Sea Res. 28, 901–919 (1981).

    Article  ADS  Google Scholar 

  4. Jenkins, W. J. & Goldman, J. C. J. mar. Res. 43, 465–491 (1985).

    Article  CAS  Google Scholar 

  5. Jenkins, W. J. Nature 300, 246–248 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Lewis, M. R., Harrison, W. G., Oakey, N. S., Herbert, D. & Platt, T. Science 234, 870–873 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Jenkins, W. J. Nature 331, 521–523 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Platt, T. & Harrison, W. G. Nature 318, 55–58 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Smith, R. C., Eppley, R. W. & Baker, K. S. Mar. Biol. 66, 281–288 (1982).

    Article  Google Scholar 

  10. Brown, O. B. et al. Science 229, 163–167 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Smith, R. C. in Global Ocean Flux Study, 103–124 (National Academy Press, Washington DC, 1984).

    Google Scholar 

  12. Eppley, W., Stewart, E., Abbott, M. R. & Heymann, U. J. Plank. Res. 7, 57–70 (1985).

    Article  Google Scholar 

  13. Lohrenz, S. E., Wiesenburg, D. A., DePalma, I. P., Johnson, K. S. & Gustafson, D. E. Jr Deep Sea Res. 35, 793–810 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Millot, C. J. J. geophys. Res. 90, 7169–7176 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Arnone, R. A. & La Violette, P. E. J. geophys. Res. 91, 2351–2364 (1986).

    Article  ADS  Google Scholar 

  16. Gordon, H. R. & Clark, D. K. Appl. Opt. 20, 4175–4180 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Gordon, H. R. & Clark, D. K. Boundary-Layer Meteorol. 18, 299–313 (1980).

    Article  ADS  Google Scholar 

  18. Smith, R. C., Baker, K. S. & Dustan, P. Fluorometric Techniques for the Measurement of Oceanic Chlorophyll in the Support of Remote Sensing 81–17 (Scripps Institution of Oceanography, La Jolla, California, 1981).

    Google Scholar 

  19. Johnson, K. S., Willason, S. W., Wiesenburg, D. A., Lohrenz, S. E. & Arnone, R. A. Deep Sea Res. (in the press).

  20. Global Ocean Flux Study (National Academy Press, Washington DC, 1984).

  21. Arnone, R. A., Bidigare, R. R., Trees, C. C. & Brooks, J. M. Soc. Photo-Opt. Instr. Eng. 637, 126–130 (1986).

    CAS  Google Scholar 

  22. Sokal, R. R. & Rohlf, F. J. Biometry (Freeman, San Francisco, 1969).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohrenz, S., Arnone, R., Wiesenburg, D. et al. Satellite detection of transient enhanced primary production in the western Mediterranean Sea. Nature 335, 245–247 (1988). https://doi.org/10.1038/335245a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335245a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing