Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus

Abstract

The regulation of atmospheric oxygen levels (pO2) occurs on million-year timescales and is effected by modulation of sedimentary organic carbon burial and weathering rates1,2. Until recently it was believed that these processes were dominated by material produced by marine organisms; now it appears that terrestrial plants contribute a significant amount of organic detritus to marine sediments. Here I explore the possibility of a coupling between the rates of terrigenous and marine sedimentary organic carbon burial (BOC) that might stabilize PO2 at or near the present atmospheric level. The coupling involves fire as a means to transfer phosphorus, the nutrient that limits global BOC3,4 and thus global oxygen production rates, from terrestrial to marine environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walker, J. C. G. Evolution of the Atmosphere (Macmillan, New York, 1977).

    Google Scholar 

  2. Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley, New York, 1978).

    Google Scholar 

  3. Redfield, A. C. Am. Scient. 46, 205–222 (1958).

    CAS  Google Scholar 

  4. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Eldigio, Palisades, New York, 1982).

    Google Scholar 

  5. Broecker, W. S. J. geophys. Res. 75, 3553–3557 (1970).

    Article  ADS  CAS  Google Scholar 

  6. Walker, J. C. G. Bioscience 34, 486–491 (1984).

    Article  CAS  Google Scholar 

  7. Holland, H. D. The Chemical Evolution of the Atmosphere and Ocean (Princeton University Press, New Jersey, 1984).

    Google Scholar 

  8. Froelich, P. N., Bender, M. L., Luedtke, N. A., Heath, G. R. & DeVries, T. Am. J. Sci. 282, 474–511 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Sherwood, B. A., Sager, S. L. & Holland, H. D. Geochim. cosmochim. Acta 51, 1861–1866 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Jahnke, R. A. & Jackson, G. A. Nature 329, 621–623 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Berner, R. A. Am. J. Sci. 282, 451–473 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Gagosian, R. B., Peltzer, E. T. & Merrill, J. T. Nature 325, 800–803 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Meyers-Schulte, K. J. & Hedges, J. I. Nature 321, 61–63 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Ittekot, V. Nature 332, 436–438 (1988).

    Article  ADS  Google Scholar 

  15. Arthur, M. A., Dean, W. E. & Schlanger, S. O. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 504–530 (Am. Geophys. Un., Washington D.C., 1985).

    Google Scholar 

  16. Stein, R., Rulkotter, J. & Welte, D. H. Chem. Geol. 56, 1–32 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Simoneit, B. R. T. Mar. Geol. 70, 9–41 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Berner, R. A. & Raiswell, R. Geochim. cosmochim. Acta 47, 855–862 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Beerbower, R. in Geological Factors and the Evolution of Plants (ed. Tiffney, B. H.) 47–91 (Yale University Press, 1985).

    Google Scholar 

  20. Watson, A., Lovelock, J. E. & Margulis, L. Biosystems 10, 293–298 (1978).

    Article  CAS  Google Scholar 

  21. Lasaga, A. C., Berner, R. A. & Garrels, R. M. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 397–411 (Am. Geophys. Un., Washington D.C., 1985).

    Google Scholar 

  22. Kump, L. R. & Garrels, R. M. Am. J. Sci. 286, 337–360 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Berner, R. A. Am. J. Sci. 287, 177–196 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Lovelock, J. E. in Geophysiology of Amazonia, Vegetation and Climate Interactions (ed. Dickinson, E.) 526 pp. (Wiley, New York, 1987).

    Google Scholar 

  25. Rowe, P. B. Trans. Am. geophys. Un. 25, 84–86 (1944).

    Google Scholar 

  26. Hingston, F. J. & Raison, R. J. in Cycling of C, N, S and P in Terrestrial and Aquatic Ecosystems (eds Freney, J. R. & Galbally, I. E.) 11–24 (Springer, Berlin, 1982).

    Google Scholar 

  27. Lloyd, P. S. J. Ecol. 59, 261–273 (1971).

    Article  Google Scholar 

  28. Smith, D. W. & Bowes, G. C. Can. J. Soil Sci. 54, 214–224 (1974).

    Article  Google Scholar 

  29. Harwood, C. E. & Jackson, W. D. Aust. Forest. 38, 92–99 (1975).

    Article  CAS  Google Scholar 

  30. Krebs, C. J. Ecology: The Experimental Analysis of Distribution and Abundance 2nd edn, 511 (Harper & Row, New York, 1978).

    Google Scholar 

  31. Knoll, M. A. & James, W. C. Geology 15, 1099–1102 (1987).

    Article  ADS  Google Scholar 

  32. Likens, G. E., Bormann, F. H. & Johnson, N. M. in Some Perspectives of the Major Biogeochemical Cycles (ed. Likens, G. E.) 93–122 (Wiley, New York, 1981).

    Google Scholar 

  33. Hartmann, M., Muller, P. J., Suess, E. & van der Weijden, C. H. Meteor-Forschungsergebnisse C24, 1–67 (1976).

    CAS  Google Scholar 

  34. Nissenbaum, A. Geochim. cosmochim. Acta 43, 1973–1978 (1979).

    Article  ADS  CAS  Google Scholar 

  35. Mach, D. L., Ramirez, A. & Holland, H. D. Am. J. Sci. 287, 429–441 (1987).

    Article  ADS  CAS  Google Scholar 

  36. Rhoads, D. C. & Morse, J. W. Lethaia 4, 413–428 (1978).

    Article  Google Scholar 

  37. Cope, M. J. & Chaloner, W. G. in Geological Factors and the Evolution of Plants (ed. Tiffney, B. H.) 257–277 (Yale University Press, 1985).

    Google Scholar 

  38. Drysdale, D. An Introduction to Fire Dynamics (Wiley, New York, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kump, L. Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus. Nature 335, 152–154 (1988). https://doi.org/10.1038/335152a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335152a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing