Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Properdin, the terminal complement components, thrombospondin and the circumsporozoite protein of malaria parasites contain similar sequence motifs

Abstract

Properdin is a plasma glycoprotein which stabilizes the C3bnBb¯ enzyme complex of the alternative pathway of the complement system1,2. Unlike the classical pathway, which is initiated by interaction of C1q with the Fc regions of IgG or IgM antibodies in immune complexes, the alternative pathway can be directly activated via binding of C3b to surfaces of foreign organisms3,4. The stabilized C3bnBbP¯ complex activates components C3 and C5 resulting in opsonization of foreign material (via C3b) and assembly of the membrane attack complex (via C5b) on target cells. Therefore properdin greatly enhances complement-mediated clearance and inactivation mechanisms in both natural and acquired resistance to infection1,4. This paper shows that the primary amino acid sequence of properdin is composed mainly of six repeating motifs, each of 60 amino acids, and that similar sequences are found in thrombospondin5, the circumsporozoite protein of malaria parasites6–8 and regions of the membrane-attack components of complement9. These similarities may provide insight into the mechanisms by which parasites avoid host defences mediated by complement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pillemer, L. et al. Science 120, 279–285 (1954).

    Article  ADS  CAS  Google Scholar 

  2. Fearon, D. T. & Austen, K. F. J. exp. Med. 142, 856–863 (1975).

    Article  CAS  Google Scholar 

  3. Reid, K. B. M. & Porter, R. R. A. Rev. Biochem. 50, 433–464 (1981).

    Article  CAS  Google Scholar 

  4. Whaley, K. Complement in Health and Disease (MTP Lancaster, 1987).

    Google Scholar 

  5. Lawler, J. & Hynes, R. O. J. cell. Biol. 103, 1635–1648 (1986).

    Article  CAS  Google Scholar 

  6. Ozaki, L. S., Dvec, P., Nussenzweig, R. S., Nussenzweig, V. & Godson, G. N. Cell 34, 815–822 (1983).

    Article  CAS  Google Scholar 

  7. Dame, J. B. et al. Science 225, 593–599 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Arnot, D. E. et al. Science 230, 815–818 (1985).

    Article  ADS  CAS  Google Scholar 

  9. DiScipio, R. G., Chakravarti, D. N., Müller-Eberhard, H. J. & Fey, G. J. biol. Chem. 263, 549–560 (1988).

    CAS  PubMed  Google Scholar 

  10. Reid, K. B. M. & Gagnon, J. Molec. Immun. 18, 949–959 (1981).

    Article  CAS  Google Scholar 

  11. Nakamo, Y., Matsuda, T., Sakamoto, T. & Motowa, T. J. immunol. Meth. 90, 77–83 (1986).

    Article  Google Scholar 

  12. DiScipio, R. G. Molec. Immun. 19, 631–635 (1982).

    Article  CAS  Google Scholar 

  13. Smith, C. A., Pangburn, M. K., Vogel, C. & Müller-Eberhard, H. J. J. biol. Chem. 259, 4582–4588 (1984).

    CAS  PubMed  Google Scholar 

  14. Good, M. F. et al. Proc. natn. Acad. Sci. U.S.A. 85, 1199–1203 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Sjoholm, A. G., Braconier, J. H. & Sonderstrom, C. Clin. expl. Immun. 50, 291–297 (1982).

    CAS  Google Scholar 

  16. Spath, P. J., Misiano, G. & Schaad, U.B. Complement 2, 74 (1985).

    Google Scholar 

  17. Densen, P., Weiler, J. M., Griffis, J. McL. & Hoffmann, L. G. New Engl. J. Med. 316, 922–926 (1987).

    Article  CAS  Google Scholar 

  18. Gelfand, E. W. et al. Am. J. Med. 82, 671–675 (1987).

    Article  CAS  Google Scholar 

  19. Bohnsack, J. F. & Brown, E. J. Am. Rev. Med. 37, 49–59 (1986).

    Article  CAS  Google Scholar 

  20. Robson, K. J. H. et al. Nature 335, 79–82 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Anson, D. S. et al. EMBO J. 3, 1053–1060 (1984).

    Article  CAS  Google Scholar 

  22. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–569 (1980).

    Article  CAS  Google Scholar 

  23. Sanger, F., Coulson, A. R., Barell, B. G., Smith, A. J. H. & Roe, B. A. J. molec. Biol. 143, 161–178 (1980).

    Article  CAS  Google Scholar 

  24. Dayhoff, M. O., Barker, W. C. & Hunt, L. T. Meth. Enzym. 91, 524–545 (1983).

    Article  CAS  Google Scholar 

  25. Chrigwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goundis, D., Reid, K. Properdin, the terminal complement components, thrombospondin and the circumsporozoite protein of malaria parasites contain similar sequence motifs. Nature 335, 82–85 (1988). https://doi.org/10.1038/335082a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335082a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing