Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Contaminated aquifers are a forgotten component of the global N2O budget

Abstract

One of the chemical components contributing to the destruction of the ozone layer in the upper atmosphere consists of the nitrogen oxides formed from N2O (ref. 1). Prompted by the prevailing idea that the ocean is not a major source of N2O or a sink for N2O, estimates have been made of global fluxes from continental ecosystems2. Although most land areas are underlain by groundwater3, this medium has never been considered in global budgeting of N2O. A large number of aquifers around the world are contaminated by nitrogen compounds, and processes of nitrification and denitrification are reported to be operative in this environment3. These processes lead to the production of N2O (refs 4 and 5). Here we report that the concentration of N2O in phreatic aerobic aquifers contaminated by anthropogenic activities (disposal of human or animal waste, cultivation and fertilization) are up to three orders of magnitude higher than the concentration expected as a result of equilibrium with the atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cicerone, R. J. Science 237, 35–42 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Banin, A., Lawless, J. G. & Whitten, R. C. Adv. Space Res. 4, 207–216 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Freeze, R. A. & Cherry, J. A. Groundwater (Prentice-Hall, Englewood Cliffs, 1979).

    Google Scholar 

  4. Delwiche, C. C. in Stratospheric Ozone and Man (eds Bower, F. A. & Ward, R. B.) 65–77 (CRC, Boca Raton, Florida, 1982).

    Google Scholar 

  5. Burdof, J. R. & Bremner, J. M. Soil Biol. Biochem. 7, 389–394 (1975).

    Article  Google Scholar 

  6. Krajenbrink, G. J. W., Ronen, D., Duijvenbooden, van W., Magaritz, M. & Wever, D. J. Hydrol. 98, 83–102 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Ronen, D., Kanfi, Y. & Magaritz, M. in Developments in Ecology and Environmental Quality (ed. Shuval, H. I.) 301–310 (Balaban International Science Services, Rehovot/Philadelphia, 1983).

    Google Scholar 

  8. Ronen, D. & Magaritz, M. J. Hydrol. 80, 311–323 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Ronen, D., Magartiz, M. & Levy, L. Water Res. 20, 311–315 (1986).

    Article  CAS  Google Scholar 

  10. Almon, E. thesis, Weismann Inst. Sci. (1986).

  11. Moiser, A. R. & Mack, L. Soil Sci. Soc. Am. J. 44, 1121–1123 (1980).

    Article  ADS  Google Scholar 

  12. Cohen, Y. Nature 272, 235–237 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Ronen, D., Magaritz, M., Almon, E. & Amiel, A. J. Water Resources Res. 23, 1554–1560 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Mathew, K., Newman, P. W. G. & Ho, G. E. in Groundwater Recharge with Secondary Sewage Effluents (Tech. Paper No. 71, Australian Government Publishing Service, Canberra, 1982).

    Google Scholar 

  15. Gvirtzman, H., Ronen, D. & Magaritz, M. J. Hydrol. 87, 267–283 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Cohen, Y. & Gordon, L. I. J. geophys. Res. 84, 347–353 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Elkins, J. W., Wofsy, S. C., McElroy, M. B., Kolb, C. E. & Kaplan, W. A. Nature 275, 602–606 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Lipschultz, F. et al. Nature 294, 641–643 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Weiss, R. F. & Price, B. A. Marine Chem. 8, 347–359 (1980).

    Article  CAS  Google Scholar 

  20. Weiss, R. F. J. geophys. Res. 86, 7185–7195 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Hao, W. M., Wofsy, S. C., McElroy, M. B., Beer, J. M. & Togan, M. A. J. geophys. Res. 92, 3098–3104 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Bowden, W. B. & Bormann, F. H. Science 233, 867–869 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Butler, J. H., Jones, R. D., Garber, J. H. & Gordon, L. I. Geochim. cosmochim. Acta 51, 697–706 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Kaplan, W. A. et al. Pageoph. 116, 423–438 (1978).

    Article  CAS  Google Scholar 

  25. Yoshinari, D. Marine Chem. 4, 189–202 (1976).

    Article  CAS  Google Scholar 

  26. Cohen, Y. & Gordon, L. I. Deep Sea Res. 25, 509–524 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Pierotti, D. & Rasmussen, R. A. Teilus 32, 56–72 (1980).

    ADS  CAS  Google Scholar 

  28. Minami, K. & Fukushi, S. Soil Sci. Pl. Nutr. 30, 495–502 (1984).

    Article  CAS  Google Scholar 

  29. Himmelblau, D. M. Chem. Rev. 64, 527–550 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronen, D., Magaritz, M. & Almon, E. Contaminated aquifers are a forgotten component of the global N2O budget. Nature 335, 57–59 (1988). https://doi.org/10.1038/335057a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335057a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing