Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glacio-eustatic sea-level control on Red Sea salinity

Abstract

Previous studies of the Red Sea demonstrated that glacial surface-and bottom-water salinities in the basin were significantly higher than at present. The very low abundance of planktonic foraminifera, the so-called 'aplanktonic zone', during the last glacial indicates that surface-water conditions approached or exceeded the tolerance limits of this plankton group1,2. Glacial sediments are also characterized by high concentrations of magnesian calcite3,4, dolomite3, inorganically precipitated aragonite4,5 and benthic foraminifera typical of hypersaline environments3,6. Additional evidence from oxygen isotope records of planktonic2,7 and benthic foraminifera8,9, as well as pteropods2, demonstrate that glacial–interglacial contrasts in the Red Sea have an amplitude much larger than typically observed in open ocean records. Here we use both oxygen isotope data and a 'fractional overmixing' model to estimate the impact of the most recent (18,000 yr BP) Pleistocene glacio-eustatic sea-level lowering on Red Sea salinity. We estimate that during the last glacial maximum, surface salinities in the central Red Sea were more than 10.0‰ higher than at present. Deep-water salinities were also higher during the last glaciation and remained unusually high through deglaciation. The combination of very high bottom salinities and the onset of pluvial conditions during deglaciation in the Red Sea region prevented ventilation of Red Sea bottom waters and resulted in the accumulation of organic-rich sediments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berggren, W. A. & Boersma, A. in Hot Brines and Recent Heavy Metal Deposits in the Red Sea (eds Degens, E. T. & Ross, D. A.) 282–298 (Springer, Berlin, 1969).

    Book  Google Scholar 

  2. Reiss, Z. et al. Quat. Res. 14, 294–308 (1980).

    Article  ADS  Google Scholar 

  3. Locke, S. thesis, Univ. South Carolina (1986).

  4. Milliman, J. D., Ross, D. A. & Ku, IL. L., J. sedim. Petrol. 39, 724–736 (1969).

    CAS  Google Scholar 

  5. Ku, T. L., Thurber, D. L. & Mathieu, G. G. in Hot Brines and Recent Heavy Metal Deposits in the Red Sea (eds Degens, E. T. & Ross, D. A.) 348–359 (Springer, Berlin, 1969).

    Book  Google Scholar 

  6. Winter, A. et al. Mar. Geol. 53, 17–22 (1983).

    Article  Google Scholar 

  7. Deuser, W. G., Ross, E. H. & Waterman, L. S. Science 191, 1168–1170 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Luz, B. & Reiss, Z. Utrecht micropaleont. Bull. 30, 129–140 (1983).

    Google Scholar 

  9. Almogi-Labin, A., Luz, B. & Duplessy, J. C. Paleogeogr. Paleoclim. Paleoecol. 57, 195–211 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Stommel, H. & Farmer, H. J. mar Res. 12, 13–20 (1953).

    Google Scholar 

  11. Assaf, G. & Hecht, A. Deep Sea Res. 21, 947–958 (1974).

    Google Scholar 

  12. Bethoux, J. P. Oceanol. Acta 2, 157–163 (1979).

    Google Scholar 

  13. Anati, D. A. Oceanol. Acta 3, 395 (1980).

    Google Scholar 

  14. Bryden, H. L. & Stommel, H. M. Oceanol. Acta 7, 289–296 (1984).

    Google Scholar 

  15. Ross, D. A. & Degens, E. T. in Hot Brines and Recent Heavy Metal Deposits in the Red Sea (eds Degens, E. T. & Ross, D. A.) 363–367 (Springer, Berlin 1969).

    Book  Google Scholar 

  16. Duplessy, J. C. Nature 295, 494–498 (1982).

    Article  ADS  Google Scholar 

  17. Shackleton, N. J. Phil. Trans. R. Soc. B 289, 169–182 (1977).

    Article  ADS  Google Scholar 

  18. Mix, A. C. & Pisias, N. G. Nature 331, 249–251 (1988).

    Article  ADS  Google Scholar 

  19. Labeyrie, L., Duplessy, J. C. & Blanc, P. Nature 327, 477–482 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Craig, H. & Gordon, L. I. in Stable Isotopes in Oceanographic Studies and Paleotemperatures (ed. A. Tongiorgi) 1–122 (Consiglio Nazionale delle Richerche, Laboratorio di Geolgia Nucleare, Pisa, 1965).

    Google Scholar 

  21. CLIMAP Project Members Science 191, 1131–1137 (1976).

  22. CLIMAP Project Members Geol. Soc. Am. Map and Chart Series MC-36 (1981).

  23. Sieldler, G. Meteor. Forsch. Ergebn. R.A. 4, 1–76 (1968).

    Google Scholar 

  24. Craig, H. Science 154, 1544–1548 (1966).

    Article  ADS  CAS  Google Scholar 

  25. Epstein, S. & Mayeda, T. Geochim. cosmochim. Acta 4, 213–284 (1953).

    Article  ADS  CAS  Google Scholar 

  26. Milliman, J. D. & Emery, K. O. Science 162, 1121–1123 (1968).

    Article  ADS  CAS  Google Scholar 

  27. Chappell, J. & Shackleton, N. J. Nature 324, 137–140 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Matthews, R. K. Dynamic Stratigraphy (Prentice-Hall, Englewood Cliffs, 1984).

    Google Scholar 

  29. Maillard, C. & Soliman, G. Oceanol. Acta 9, 249 (1986).

    Google Scholar 

  30. Van Campo, E., Duplessy, J. C. & Rossignol-Strick, M. Nature 296, 56–59 (1982).

    Article  ADS  CAS  Google Scholar 

  31. Kolla, V. & Biscaye, P. E. J. sedim. Petrol. 47, 642–649 (1977).

    CAS  Google Scholar 

  32. Street, F. A. & Grove, A. T. Quat. Res. 12, 83–118 (1979).

    Article  Google Scholar 

  33. Hemleben, C. in II Int. Conf. Paleoceanogr., Woods Hole (1986).

    Google Scholar 

  34. Herman, Y. in VIII Congr. Int. Ass. Quat. Res. 325–348, Salt Lake City (1968).

    Google Scholar 

  35. Ivanova, E. V. Mar. Micropaleontol. 9, 335–364 (1985).

    Article  ADS  Google Scholar 

  36. Ritchie, J. C., Eyles, C. H. & Haynes, C. V. Nature 314, 352–355 (1985).

    Article  ADS  Google Scholar 

  37. Cullen, J. L. Paleogeogr. Paleoclimatol. Paleoecol. 35, 315–356 (1981).

    Article  ADS  Google Scholar 

  38. Kutzbach, J. E. Science 214, 59–61 (1981).

    Article  ADS  CAS  Google Scholar 

  39. Prell, W. L. in Milankovitch and Climate Part 1 (eds Berger, A. I. et al.) 349–366 (Reidel, Dodrecht, 1984).

    Google Scholar 

  40. Rossignol-Strick, M. Nature 304, 46–49 (1983).

    Article  ADS  Google Scholar 

  41. Rossignol-Strick, M. Paleogeogr. Paleoclimatol. Paleoecol. 49, 237–263 (1985).

    Article  ADS  Google Scholar 

  42. Rossignol-Strick, M. Paleoceanography 2, 333–360 (1987).

    Article  ADS  Google Scholar 

  43. Wyrtki, K. in Colloq. Int. CNRS no. 215 (Processus de Formation des Eaux Océaniques Profondes) 91–106 (1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thunell, R., Locke, S. & Williams, D. Glacio-eustatic sea-level control on Red Sea salinity. Nature 334, 601–604 (1988). https://doi.org/10.1038/334601a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334601a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing