Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes

Abstract

Muscarinic acetylcholine receptors (mAChRs), like many other neurotransmitter and hormone receptors, transduce agonist signals by activating G proteins to regulate ion channel activity and the generation of second messengers via the phosphoinositide (PI) and adenylyl cyclase systems1,2. Human mAChRs are a family of at least four gene products which have distinct primary structures, ligand-binding properties and patterns of tissue-specific expression3. To examine the question of whether functional differences exist between multiple receptor subtypes, we have investigated the ability of each subtype to regulate PI hydrolysis and adenylyl cyclase when expressed individually in a cell lacking endogenous mAChRs. We show that the HM2 and HM3 mAChRs efficiently inhibit adenylyl cyclase activity but poorly activate PI hydrolysis. In contrast, the HM1 and HM4 mAChRs strongly activate PI hydrolysis, but do not inhibit adenylyl cyclase, and in fact can substantially elevate cAMP levels. Interestingly, the subtypes that we find to be functionally similar are also more similar in sequence. Our results indicate that the different receptor subtypes are functionally specialized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stryer, L. & Bourne, H. A. Rev. Cell Biol. 2, 391–419 (1986).

    Article  CAS  Google Scholar 

  2. Nathanson, N. A. Rev. Neurosci. 10, 195–236 (1987).

    Article  CAS  Google Scholar 

  3. Peralta, E. et al. EMBO J. 6, 3923–3929 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hammer, R. et al. Nature 283, 90–92 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Birdsall, N. & Hulme, E. Trends Pharmac. Sci. 4, 459–463 (1983).

    Article  CAS  Google Scholar 

  6. Watson, M. et al. Trends Pharmac. Sci. 7, 46–55 (1986).

    Article  Google Scholar 

  7. Gil, D. &. Wolfe, B. J. Pharmac. exp. Ther. 232, 608–616 (1985).

    CAS  Google Scholar 

  8. Berridge, M. J. A. Rev. Biochem. 56, 159–193 (1987).

    Article  CAS  Google Scholar 

  9. Nishizuka, Y. Science 233, 305–312 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Yoshimasa, T. et al. Nature 327, 67–70 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Salter, R., Krinks, M., Klee, C. & Neer, E. J. biol. Chem. 256, 9830–9833 (1981).

    CAS  PubMed  Google Scholar 

  12. Hughes, A. & Harden, T. J. Pharmac. exp. Ther. 237, 173–178 (1987).

    Google Scholar 

  13. Rabe, C., Delorme, E., Weight, F. J. Pharmac. exp. Ther. 243, 534–541 (1987).

    CAS  Google Scholar 

  14. Korc, M., Ackerman, M., Roeske, W. J. Pharmac. exp. Ther. 232, 608–616 (1985).

    Google Scholar 

  15. Peralta, E. et al. Science 236, 600–605 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kubo, T. et al. Nature 323, 411–416 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Kubo, T. et al. FEBS Lett. 209, 367–372 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Dixon, R. et al. Nature 321, 75–79 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Nathans, J., Thomas, D., Hogness, D. Science 232, 193–200 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Peralta, E. et al. Trends in Pharmacol Sci. February Suppl. 6–11 (1988).

  21. Cockcroft, S. & Gomperts, B. D. Nature 314, 534–536 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Bray, P. et al. Proc. natn. Acad. Sci. U.S.A. 84, 5115–5119 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Fukuda, K. et al. Nature 327, 623–625 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Uhler, M. & McKnight, G. S. J. biol. Chem. 262, 15202–15207 (1987).

    CAS  PubMed  Google Scholar 

  25. Coussens, L. et al. Science 233, 859–866 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Ashkenazi, A. et al. Science 238, 672–675 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Berridge, M. J., Downes, C. & Hanley, M. R. Biochem. J. 206, 587–595 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eaton, D. L. et al. Biochemistry 26, 8343–8347 (1986).

    Article  Google Scholar 

  29. Gorman, C., Padmanabram, R. & Howard, B. Science 221, 551–553 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Schimerlik, M. & Searles, R. Biochemistry 19, 3407–3413 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peralta, E., Ashkenazi, A., Winslow, J. et al. Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334, 434–437 (1988). https://doi.org/10.1038/334434a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334434a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing