Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein

Abstract

Plant hormones such as abscisic acid (ABA) appear to modulate the responses of plants under adverse conditions1,2 ABA has a poorly-understood role in embryogenesis, accumulating in the stages before dessication3,4, and altering the rate of transcription of a specific set of genes5,6. The functions of the proteins encoded by these genes, however, are unknown, and their messenger RNAs decrease again during early germination7–9. No correlation has been established between ABA levels and the induction of particular genes in non-embryonic organs. The level of ABA increases substantially in leaf tissues subjected to water stress10 and thus it has been proposed that ABA mediates plant–water relations1,10. Here we describe the isolation of complementary DNA and genomic clones of a gene that is ABA-inducible in the maize embryo, and whose messenger RNA accumulates in epidermial cells, which is also induced by water stress and wounding in leaves. The deduced protein is rich in glycine. Identification of this gene will contribute to our understanding of the role of ABA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davies, M. J. & Mansfield, T. A. in Abscisic Acid (ed. Addicott, F. T.) 237–268 (Praeger, New York, 1983).

    Google Scholar 

  2. Singh, N. K. et al. Proc. natn. Acad. Sci. U.S.A. 84, 739–743 (1987).

    Article  ADS  CAS  Google Scholar 

  3. King, R. W. Planta 132, 43–51 (1976).

    Article  CAS  Google Scholar 

  4. Jones, R. J. & Brenner, M. L. Pl. Physiol. 83, 905–909 (1987).

    Article  CAS  Google Scholar 

  5. Williamson, J. D., Quatrano, R. S. & Cuming, C. Eur. J. Bioehem. 152, 501–507 (1985).

    Article  CAS  Google Scholar 

  6. Baker, J. C. & Dure, L. in Molecular Biology of Plant Growth Control (eds Fox, J. E. & Jacobs, M.) 51–62 (Liss, New York, 1987).

    Google Scholar 

  7. Galau, G. A., Hughes, D. W. & Dure, L. Plant molec. Biol. 7, 155–170 (1986).

    Article  CAS  Google Scholar 

  8. Quatrano, R. S. Oxford Surv. Plant molec. Cell Biol. 3, 467–477 (1986).

    CAS  Google Scholar 

  9. Sánchez-Martínez, D., Puigdoménech, P. & Pagés, M. Pl. Physiol. 82, 543–549 (1986).

    Article  Google Scholar 

  10. Wright, S. T. C. & Hiron, R. W. P. Nature 224, 719–720 (1969).

    Article  ADS  CAS  Google Scholar 

  11. Condit, C. H. & Meagher, R. B. Nature 323, 178–181 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Hannkogln, I. & Fuchs, E. Cell 33, 915–924 (1983).

    Article  Google Scholar 

  13. Eickbush, T. H. & Burke, W. D. Proc. natn. Acad. Sci. U.S.A. 82, 2814–2818 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Beardsell, M. F. & Cohen, D. Pl. Physiol. 56, 207–212 (1975).

    Article  CAS  Google Scholar 

  15. Pauling, L. & Corev, R. B. Proc. natn. Acad. Sci. U.S.A. 37, 729–740 (1951).

    Article  ADS  CAS  Google Scholar 

  16. Gallardo, D. et al. Pl. Sci. 54, 211–218 (1988).

    Article  CAS  Google Scholar 

  17. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Hopp, T. P. & Woods, K. R. Proc. natn. Acad. Sci. U.S.A. 78, 3824–3828 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Garnier, J., Osguthorpe, D. J. & Robson, B. J. molec. Biol. 120, 97–117 (1978).

    Article  CAS  Google Scholar 

  20. Pérez-Grau, L. et al. FEBS Lett. 202, 145–148 (1986).

    Article  Google Scholar 

  21. Raikhel, N. V., Hughes, D. W. & Galau, G. A. in Molecular Biology of Plant Growth Control (eds Fox, J. E. & Jacobs, M.) 197–207 (Liss, New York, 1987).

    Google Scholar 

  22. Burr, B. et al. J. molec. Biol. 154, 33–49 (1982).

    Article  CAS  Google Scholar 

  23. Sánchez-Martínez, D. et al. Pl. Sci. 53, 215–222 (1987).

    Article  Google Scholar 

  24. Chandler, P. M. et al. J. Cell. Biol. Suppl. 12C Abs L-033, 143 (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, J., Sánchez-Martínez, D., Stiefel, V. et al. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334, 262–264 (1988). https://doi.org/10.1038/334262a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334262a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing