Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Computed redox potentials and the design of bioreductive agents

Abstract

Anti-cancer agents that have been made selective for tumour cells by exploiting the known differences in the availability of oxygen between normal and transformed cells are a promising development in cancer chemotherapy1. We have recently suggested a new type of bioreductive activity which would depend on a two-electron reduction2–4. For rational design of such compounds, it is essential to be able to predict the redox potentials and the chemical modifications needed to produce the optimum redox value. Calculating redox potentials is a daunting task for the theoretician, however, as the effect of water solvation is clearly of major significance. Recent successful calculations5–10 of differences in the free energies of biologically important molecules in aqueous solution using the free-energy perturbation method prompted us to apply (he technique to the computation of two-electron redox potentials. The results are accurate to within 20 mV, suggesting that we should be able to manipulate redox potentials by successfully predicting structures with the appropriate value.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adams, G. E. & Stratford, I. J., Biochem. Pharmac. 35, 71–76 (1986).

    Article  CAS  Google Scholar 

  2. Reynolds, C. A., Richards, W. G. & Goodford, P. Anti-Cancer Drug Design 1, 291–295 (1987).

    CAS  PubMed  Google Scholar 

  3. Reynolds, C. A., Richards, W. G. & Goodford, P. J. chem. Soc. 551–556 (1988).

  4. Burridge, J. M., Quarendon, P., Reynolds, C. A. & Goodford, P. J., J. molec. Graphics 5, 165–166 (1987).

    Article  CAS  Google Scholar 

  5. Cieplak, P., Singh, U. C. & Kollman, P. A. Int. J. quant. Chem. QBS14, 65–74 (1987).

    Article  CAS  Google Scholar 

  6. Wong, C. F. & McCammon, J. A. J. Am. chem. Soc. 108, 3830–3832 (1986).

    Article  CAS  Google Scholar 

  7. Singh, U. C., Brown, F. K., Bash, P. A. & Kollman, P. A., J. Am. chem. Soc. 109, 1607–1614 (1987).

    Article  CAS  Google Scholar 

  8. Bash, P. A., Singh, U. C., Brown, F. K., Langridge, R. & Kollman, P. A. Science 235, 574–575 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Bash, P. A., Singh, U. C., Langridge, R. & Kollman, P. A. Science 236, 564–568 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Rao, S. N., Singh, U. C., Bash, P. A. & Kollman, P. A. Nature 328, 551–554 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Kennedy, K. A., Teicher, B. A., Rockwell, S. & Sartorelli, A. C. Biochem. Pharmac. 29, 1–8 (1980).

    Article  CAS  Google Scholar 

  12. Zwanzig, R. W. J. chem. Phys. 22, 1420–1426 (1954).

    Article  ADS  CAS  Google Scholar 

  13. Postma, J. P. M., Berendsen, H. J. & Haak, J. R., Faraday Symp. Chem. 17, 55–67 (1982).

    Article  Google Scholar 

  14. Tembe, B. L. & McCammon, J. A. Computers Chem. 8, 281–283 (1984).

    Article  CAS  Google Scholar 

  15. Lybrand, T. P., McCammon, J. A. & Wipff, G. Proc. natn. Acad. Sci. U.S.A. 83, 833–835 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Jorgensen, W. L. & Ravimohan, C. J. chem. Phys. 83, 3050–3054 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Singh, U. C., Weiner, P. K., Caldwell, J. W. & Kollman, P. A. AMBER Version 3.0 (Dept Pharmaceutical Chemistry, Univ. San Francisco, 1986).

    Google Scholar 

  18. Roothaan, C. C. J. Rev. mod. Phys. 23, 69–89 (1951).

    Article  ADS  CAS  Google Scholar 

  19. Møller, C. & Plesset, M. S., Phys. Rev. 46, 618–622 (1934).

    Article  ADS  Google Scholar 

  20. Dewer, M. J. S. & Stewart, J. J. P., AMPAC, Quantum Chemistry Program Exchange Bulletin 6, 24 (1986).

    Google Scholar 

  21. Clark, W. M., Oxidation-Reduction Potentials of Organic Systems (Balliere, Tindall & Cox, London, 1960).

    Google Scholar 

  22. Jorgensen, W. L., Chandrasekhar, J., Madura, J., Impey, R. W. & Klein, M. L. J. chem. Phys. 79, 926–935 (1983).

    Article  ADS  CAS  Google Scholar 

  23. van Gunsteren, W. F. & Berendsen, H. J. C. Molec. Phys. 34, 1311–1327 (1977).

    Article  ADS  CAS  Google Scholar 

  24. Weiner, S. J. et al. J. Am. chem. Soc. 106, 765–784 (1984).

    Article  CAS  Google Scholar 

  25. Weiner, S. J., Kollman, P. A., Nguyen, D. T. & Case, D. A. J. comput., Chem. 7, 230–252 (1986).

    Article  CAS  Google Scholar 

  26. Singh, U. C. & Kollman, P. A. J. comput. Chem. 5, 129–145 (1984).

    Article  CAS  Google Scholar 

  27. Frisch, M. Gaussian 82 Revision H Version (Carnegie-Mellon University, Pittsburg, 1985).

    Google Scholar 

  28. Amos, R. D. CADPAC 3.0 (University of Cambridge, 1986).

    Google Scholar 

  29. Binkley, J. S., Pople, J. A. & Hehre, W. J. J. Am. chem. Soc. 102, 939–947 (1980).

    Article  CAS  Google Scholar 

  30. Hariharan, P. C. & Pople, J. A. Theor. chim. Acta 28, 213–222 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, C., King, P. & Richards, W. Computed redox potentials and the design of bioreductive agents. Nature 334, 80–82 (1988). https://doi.org/10.1038/334080a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334080a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing