Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Entropy and enthalpy catastrophe as a stability limit for crystalline material

Abstract

The transition from a crystalline material with long-range order to a glass-like disordered structure has been observed in several metal alloys and minerals using experimental techniques such as solid-state reaction, mechanical alloying, pressure application, ion-beam mixing and hydriding1–3. In all these examples the vitrification occurs below the glass transition temperature, and because the glass can be thought of as a highly undercooled liquid, one may draw an analogy between the vitrification process and melting. The melting process is often viewed as a catastrophic instability of the crystal lattice4–6, although none of these theories predicts the melting temperature correctly. The transition from crystal to glass could also be triggered by some type of instability7; indeed, Kauzmann8 has argued that an undercooled liquid whose entropy falls below that of the crystalline phase must undergo massive freezing to a glass. Applying an 'inverse' Kauzmann argument to the problem of melting, an entropy catastrophe is predicted when the entropy of a superheated crystal exceeds that of the liquid phase. We propose that this temperature represents an ultimate stability limit for superheated or supersaturated crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnson, W. L. Prog. Mater. Sci. 30, 81–134 (1986).

    Article  CAS  Google Scholar 

  2. Mishima, O., Calvet, L. D. & Whalley, E. Nature 310, 393–395 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Richet, P. Nature 331, 56–58 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Lindemann, F. A. Z. Phys. 11, 609–615 (1910).

    CAS  Google Scholar 

  5. Cotterill, R. M. J., Jensen, E. J. & Kristensen, W. D. Phys. Lett. A44, 127–128 (1973).

    Article  CAS  Google Scholar 

  6. Gorecki, T. Z. Metallik. 65, 426–431 (1974).

    CAS  Google Scholar 

  7. Rehn, L. E., Okamoto, P. R., Pearson, J., Bhadra, R. & Grimsditch, M. Phys. Rev. Lett. 59, 2987–2990 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Kauzmann, W. Chem. Rev. 43, 219–256 (1948).

    Article  CAS  Google Scholar 

  9. Daeges, J., Gleiter, H. & Perepezko, J. H. Phys. Lett. A119, 79–82 (1986).

    Article  CAS  Google Scholar 

  10. Cormia, R. L., Mackenzie, J. D. & Turnbull, D. J. appl. Phys. 34, 2245–2248 (1963).

    Article  ADS  CAS  Google Scholar 

  11. Uhlmann, D. R. J. Non-Cryst. Solids 41, 347–357 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Jung, J. & Franck, J. P. Jap. J. appl. Phys. 26-3, 399–400 (1987).

    Article  ADS  Google Scholar 

  13. Desai, P. D. Int. J. Thermophys. 8, 621–638 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Regnaut, C. & Bretonnet, J. T. J. Phys., Paris C8, 669–673 (1985).

    Google Scholar 

  15. Pochapsky, T. E. Acta metall. 1, 747–751 (1953).

    Article  CAS  Google Scholar 

  16. Hsieh, H. & Yip, S. Phys. Rev. Lett. 59, 2760–2763 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Kraftmaker, Ya. A. Soviet Phys. Solid St. 5, 696–697 (1963).

    Google Scholar 

  18. Kraftmaker, Ya. A. & Strelkov, P. G. Soviet Phys. Solid St. 4, 1662–1664 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fecht, H., Johnson, W. Entropy and enthalpy catastrophe as a stability limit for crystalline material. Nature 334, 50–51 (1988). https://doi.org/10.1038/334050a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334050a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing