Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rates of primary electron transfer in photosynthetic reaction centres and their mechanistic implications

Abstract

The conversion of light energy to chemical energy during photosyn-thesis involves the transfer of electrons between pigments embedded in a membrane protein. This process occurs with high quantum efficiency, the result of extremely fast electron transfer over a long distance preventing back transfer and energy loss. Recently the three-dimensional structures of the photosynthetic reaction centres of the bacteria Rhodopseudomonas viridis1 and Rhodobacter sphaeroides2 have been determined, allowing a molecular descrip-tion of the primary charge separation process. There are two symmetrically related branches of pigments in the structure (L and M), extending from the special pair of bacteriochlorophyll molecules (P) to the two bacteriopheophytins (HL and HM) via two bacteriochlorophylls (BLand BM). Many features of the electron transfer process are poorly understood, such as the nature of the excited states involved, the identity of the primary charge separation step and the roles of the protein and of B3–13. We have determined the rates of electron transfer in isolated reaction centre complexes of Rps. viridis and Rb. sphaeroides as a function of temperature. The rates increase as temperature is decreased, which may be due to either changes in electronic coupling of the pigments or changes in the population of coupled vibrational modes, or a combination of the two. We see no evidence of a BL intermediate, which sets a lower limit on the rate of electron transfer from BL to HL. This is so high as to rule out transfer by two non-adiabatic steps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. J. molec. Biol. 180, 385–398 (1984).

    Article  CAS  Google Scholar 

  2. Allen, J. P., Feher, G., Yeates, T. O., Komiya, H. & Rees, D. C. Proc. natn. Acad. Sci. U.S.A. 84, 5730–5734 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Scherer, P. O. J. & Fisher, S. F. Biochim. biophys. Acta 891, 157–164 (1987).

    Article  CAS  Google Scholar 

  4. Parson, W. W. & Warshel, A. J. Am. chem. Soc. 109, 6152–6163 (1987).

    Article  CAS  Google Scholar 

  5. Lous, E. J. & Hoff, A. J. Proc. natn. Acad. Sci. U.S.A. 84, 6147–6151 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Won, Y. & Friesner, R. A. Proc. natn. Acad. Sci. U.S.A. 84, 5511–5514 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Marcus, R. A. Chem. Phys. Lett. 133, 471–477 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Parson, W. W., Scherz, A. & Warshel, A. in Antennas and Reaction Centers of Photosynthetic Bacteria (ed. M E. Michel-Beyerle) 122–126 (Springer, Berlin, 1985).

    Book  Google Scholar 

  9. Bixon, M., Jortner, J., Michel-Beyerle, M. E., Ogrodnik, A. & Lersch, W. Chem. Phys. Lett. 140, 626–630 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Chekalin, S. V., Matveetz, Ya. A., Shkuropatov, A. Ya., Shuvalov, V. A. & Yartzev, A. P. FEBS Lett. 216, 245–248 (1987).

    Article  CAS  Google Scholar 

  11. Bixon, M. & Jortner, J. J. phys. Chem. 90, 3795–3800 (1986).

    Article  CAS  Google Scholar 

  12. Marcus, R. A. & Sutin, N. Biochim. biophys. Acta 811, 265–322 (1985).

    Article  CAS  Google Scholar 

  13. Friesner, R. & Wertheimer, R. Proc. natn. Acad. Sci. U.S.A. 79, 2138–2142 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Martin, J. L., Breton, J., Hofl, A. J., Migus, A. & Antonetti, A. Proc. natn. Acad. Sci. U.S.A. 83, 957–961 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Breton, J., Martin, J. L., Migus, A., Antonetti, A. & Orszag, A. Proc. natn. Acad. Sci. U.S.A. 83, 5121–5125 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Woodbury, N. W., Becker, M., Middendorf, D. & Parson, W. W. Biochemistry 24, 7516–7521 (1985).

    Article  CAS  Google Scholar 

  17. Ditson, S. L., Davis, R. C. & Pearlstein, R. M. Biochim. biophys. Acta 766, 623–629 (1984).

    Article  CAS  Google Scholar 

  18. Kirmaier, C., Holten, D. & Parson, W. W. Biochim. biophys. Acta 810, 33–48 (1985).

    Article  CAS  Google Scholar 

  19. Ogrodnik, A., Remy-Richler, N. & Michel-Beyerle, M. E. Chem. Phys. Lett. 135, 576–581 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Frauenfelder, H. et al. Biochemistry 26, 254–261 (1987).

    Article  CAS  Google Scholar 

  21. Tiede, D. M. et al. in The Photosynthetic Bacterial Reaction Center. Structure and Dynamics (eds Breton, J. & Vermeglio, A.) NATO AS1 Series (Plenum, New York, in the press).

  22. Boxer, S. G., Lockhart, D. & Middendorf, T. R. Chem. Phys. Lett. 123, 476–482 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Meech, S. R., Hoff, A. J. & Wiersma, D. A. Chem. Phys. Lett. 121, 287–292 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Hayes, J. M. & Small, G. J. J. phys. Chem. 90, 4928–4931 (1986).

    Article  CAS  Google Scholar 

  25. Warshel, A. Proc. natn. Acad. Sci. U.S.A. 77, 3105–3109 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Miller, J. R. in Antennas and Reaction Centers of Photosynthetic Bacteria (ed. Michel-Beyerle, M. E.) 234–241 (Springer, Berlin, 1985).

    Book  Google Scholar 

  27. Axup, A. W., Albin, M., Mayo, S. L., Crutchley, R. J. & Gray, H. B. J. Am. chem. Soc. 140, 626–630 (1988).

    Google Scholar 

  28. Martin, J. L., Breton, J., Lambry, J. C. & Fleming, G. R. in The Photosynthetic Bacterial Reaction Center. Structure and Dynamics. (eds Breton, J. & Vermeglio, A.) NATO ASI Series (Plenum, New York, in the press).

  29. Marcus, R. A. ibid..

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, G., Martin, J. & Breton, J. Rates of primary electron transfer in photosynthetic reaction centres and their mechanistic implications. Nature 333, 190–192 (1988). https://doi.org/10.1038/333190a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333190a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing