Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A computational theory for the perception of coherent visual motion

Abstract

When we see motion, our perception of how one image feature moves depends on the behaviour of other features nearby. In particular, the Gestaltists proposed the law of shared common fate1,2, in which features tend to be perceived as moving together, that is, coherently. Recent psychophysical findings, such as the cooperativity of the motion system3,4 and motion capture5,6, support this law. Computationally, coherence is a sensible assumption, because if two features are close then they probably belong to the same object and thus tend to move together. Moreover, the measurement of local motion may be inaccurate7 and so the integration of motion information over large areas may help to improve the performance. Present theories of visual motion, however, do not account fully for these coherent motion percepts. We propose here a theory that does account for these phenomena and also provides a solution to the aperture problem8, where the local information in the image flow is insufficient to specify the motion uniquely.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ternus, J. Psychol. Forsch. 7, 81–136 (1926).

    Article  Google Scholar 

  2. Kofika, K. Principles of Gestalt Psychology (Harcourt, Brace & World, New York, 1935).

    Google Scholar 

  3. Williams, D. W. & Sekuler, R. Vision Res. 24, 55–62 (1984).

    Article  CAS  Google Scholar 

  4. Williams, D. W., Philips, G. & Sekuler, R. Nature 324, 253–255 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Mackay, D. M. Nature 192, 739–740 (1961).

    Article  ADS  Google Scholar 

  6. Ramachandran, V. S. & Anstis, S. M. Vision Res. 23, 1719–1724 (1983).

    Article  CAS  Google Scholar 

  7. Verri, A. & Poggio, T. Artifi. lntell. Memo 917, (MIT, Cambridge, 1986).

    Google Scholar 

  8. Marr, D. & Ullman, S. Proc. R. Soc. B211, 151–180 (1981).

    ADS  Google Scholar 

  9. Braddick, O. J. Phil. Trans. R. Soc. Lond. B290, 137–151 (1980).

    Article  CAS  Google Scholar 

  10. Horn, B. K. P. & Schunk, B. G. Artif. Intell. 17, 185–203 (1981).

    Article  Google Scholar 

  11. Hassenstein, B. & Reichardt, W. E. Z. Naturforsch. 11b, 513–524 (1956).

    Article  Google Scholar 

  12. van Santen, J. P. H. & Sperling, G. J. opt. Soc. Am. A1, 451–473 (1984).

    Article  ADS  Google Scholar 

  13. Adelson, E. H. & Bergen, J. R. J. opt. Soc. Am. A2, 284–299 (1985).

    Article  ADS  Google Scholar 

  14. Ullman, S. The Interpretation of Visual Motion (MIT Press, Cambridge, 1979).

    Google Scholar 

  15. Grzywacz, N. M. & Yuille, A. L. AIP Conf. Proc. 151, (ed. Denker, J. S.) 200–205 (American Institute of Physics, New York, 1986).

    Book  Google Scholar 

  16. Adelson, E. H. & Movshon, J. A. Nature 300, 523–525 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Anstis, S. M. Vision Res. 10, 1411–1430 (1970).

    Article  CAS  Google Scholar 

  18. Ramachandran, V. S. & Anstis, S. M. Vision Res. 23, 83–85 (1983).

    Article  CAS  Google Scholar 

  19. Hildreth, E. C. The Measurement of Visual Motion (MIT Press, Cambridge, 1983).

    MATH  Google Scholar 

  20. Poggio, T., Voorhees, H. & Yuille, A. L. Artifi. Intell. Memo 776, (MIT, Cambridge, 1984).

    Google Scholar 

  21. Bertero, M., Poggio, T. & Torre, V. Artifi. Intell. Memo 924, (MIT, Cambridge, 1987).

    Google Scholar 

  22. Ramachandran, V. S. & Inada, V. Spatial Vision 1, 57–67 (1985).

    Article  CAS  Google Scholar 

  23. Yuille, A. L. & Grzywacz, N. M. Artifi. Intell. Memo 1002, (MIT, Cambridge, 1987).

    Google Scholar 

  24. Duchon, J. Lecture Notes in Math. 571, (eds Schempp, W. & Zeller, K.) 85–100 (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  25. Nakayama, K. & Silverman, G. H. Invest. Ophthalmol. Vis. Sci. 26, 188 (1985).

    Google Scholar 

  26. Yuille, A. L. Artifi. Intell Memo 724, (MIT, Cambridge, 1983)

    Google Scholar 

  27. Little, J., Bulthoff, H. & Poggio, T. Proc. Image Understanding Workshop (ed. Baumann, L.) 915–920 (Science Applications International Corporation, McLean, Virginia, 1987).

    Google Scholar 

  28. Heeger, D. J. opt. Soc. Am. A4, 1455–1471 (1987).

    Article  ADS  Google Scholar 

  29. Marr, D. Vision (Freeman, New York, 1982).

    Google Scholar 

  30. von Schiler, P. Psych. Forsch. 17, 179–214 (1933).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuille, A., Grzywacz, N. A computational theory for the perception of coherent visual motion. Nature 333, 71–74 (1988). https://doi.org/10.1038/333071a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333071a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing