Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adenovirus E1A products suppress myogenic differentiation and inhibit transcription from muscle-specific promoters

Abstract

The primary function of the adenovirus ElA-region genes is to activate other adenoviral genes during a permissive viral infection by modifying the host cell transcriptional apparatus1,2. Host cell immortalization, or transformation by the whole adenoviral early region, presumably results as a consequence of these modifications. Both transcriptional activation and transcriptional repression of non-adenoviral genes by the E1A proteins have been reported3–9. It is currently not clear which, if either, of these activities contributes to host cell transformation and immortalization. Although there may be a physiological impact of some ElA-stimulated host cell genes10–12, in many cases the functional significance is unclear, No common target sequences have been recognized in stimulated cellular genes and it has recently been proposed that in many cases, particularly involving newly transfected genes, available 'TATA-box' sequences may be the opportunistic beneficiaries of ElA assistance as a secondary consequence of ElA primary functions within the host cell nucleus1,13. ElA-mediated transcriptional repression appears to be a more specific process insofar as common core elements are shared by the ElA-suppressed SV40, polyoma B, IgG heavy-chain and insulin enhancers9. In the present communication we report that the complete myogenic programme of L8 and C2 myoblasts can be blocked by the introduction of constitutively expressing ElA genes, and show that the transcriptional induction of muscle-specific genes is inhibited. In particular, the promoter-inducing activities of well-defined elements that are required for the muscle-specific expression of the two sarcomeric a-actins, and which normally bind cellular trans-acting factors, become targets for E1A suppression. The results support the hypothesis that the suppression of differentiation by ElA products is effected by an ElA-mediated block in the transcriptional activation of cellular genes by specific developmentally regulated cis-acting promoter elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berk, A. J. A. Rev. Genet. 20, 45–79 (1986).

    Article  CAS  Google Scholar 

  2. Kingston, R. E., Baldwin, A. S. & Sharp, P. A. Cell 41, 3–5 (1985).

    Article  CAS  Google Scholar 

  3. Moran, E. & Matthews, M. B. Cell 48, 177–178 (1987).

    Article  CAS  Google Scholar 

  4. Lillie, J. W., Green, M. & Green, M. R. Cell 46, 1043–1051 (1986).

    Article  CAS  Google Scholar 

  5. Velcich, A. & Ziff, E. Cell 40, 705–716 (1985).

    Article  CAS  Google Scholar 

  6. Hen, R., Borrelli, E. & Chambon, P. Science 230, 1391–1394 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Hen, R., Borrelli, E., Fromental, C., Sassone-Corsi, P. & Chambon, P. Nature 321, 249–251 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Velcich, A., Kern, F. G., Basilico & Ziff, E. B. Molec. cell Biol. 6, 4019–4025 (1986).

    Article  CAS  Google Scholar 

  9. Stein, R. W. & Ziff, E. B. Molec. cell Biol. 7, 1164–1170 (1987).

    Article  CAS  Google Scholar 

  10. Simon, M. C. et al. Molec. cell Biol. 7, 2884–2890 (1987).

    Article  CAS  Google Scholar 

  11. Zerler, B., Roberts, R. J., Matthews, M. B. & Moran, E. Molec. cell Biol. 7, 622–639 (1987).

    Article  Google Scholar 

  12. Hoeffler, W. K. & Roeder, R. G. Cell 41, 955–963 (1985).

    Article  CAS  Google Scholar 

  13. Wu, L., Rosser, D. S. E., Schmidt, M. C. & Berk, A. Nature 326, 512–515 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Smith, D. H., Kegler, D. M. & Ziff, E. D. Molec. cell Biol. 5, 2684–2696 (1985).

    Article  CAS  Google Scholar 

  15. Wakeman, M. J. O. Biochem. J. 228, 1–12 (1985).

    Article  Google Scholar 

  16. Entwistle, A., Curtis, D. H. & Zelin, R. J. J. Cell Biol. 103, 857–866 (1986).

    Article  CAS  Google Scholar 

  17. Endo, T. & Nadal-Ginard, B. Cell 49, 515–526 (1987).

    Article  CAS  Google Scholar 

  18. Minty, A. & Kedes, L. H. Molec. cell Biol. 6, 2125–2136 (1986).

    Article  CAS  Google Scholar 

  19. Minty, A., Blau, H. & Kedes, L. H. Molec. cell Biol. 6, 2137–2148 (1986).

    Article  CAS  Google Scholar 

  20. Mayer, Y., Czosnek, H., Zeelon, P. E., Yaffe, D. & Nudel, U. Nucleic Acids Res. 12, 1087–1100 (1984).

    Article  CAS  Google Scholar 

  21. Miwa, T. & Kedes, L. Molec. cell Biol. 8, 2803–2813 (1987).

    Article  Google Scholar 

  22. Muscat, G. & Kedes, L. Molec. cell Biol. 7, 4089–4099 (1987).

    Article  CAS  Google Scholar 

  23. Falcone, G., Tato, F. & Alema, S. Proc. natn. Acad. Sci. U.S.A. 82, 426–430 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Massague, J., Cheifetz, S., Endo, T. & Nadal-Ginard, B. Proc. natn. Acad. Sci. U.S.A. 83, 8206–8210 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Olson, E. N., Spizz, G. & Tainsky, M. A. Molec. cell Biol. 6, 2104–2111 (1987).

    Article  Google Scholar 

  26. Baldwin, E. & Kaylar, C. Proc. natn. Acad. Sci. U.S.A. 83, 8029–8033 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Yee, A. S., Reichel, R., Kovesdi, I. & Nevins, J. R. EMBLO J. 6, 2061–2068 (1987).

    Article  CAS  Google Scholar 

  28. SivaRaman, L., Subramanian, S. & Thimmappaya, B. Proc. natn. Acad. Sci. U.S.A. 83, 5914–5918 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Devaux, B., Glenn, A. & Kedinger, C. Molec. cell Biol. 7, 4560–4563 (1987).

    Article  CAS  Google Scholar 

  30. Babis, L. E., Young, C. S. H., Fisher, P. B. & Ginsberg, H. S. J. Virol. 40, 454–465 (1983).

    Google Scholar 

  31. Gunning, P. et al. Molec. cell Biol. 7, 4100–4114 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webster, K., Muscat, G. & Kedes, L. Adenovirus E1A products suppress myogenic differentiation and inhibit transcription from muscle-specific promoters. Nature 332, 553–557 (1988). https://doi.org/10.1038/332553a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332553a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing