Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Volatilization of tin as stannane in anoxic environments

Abstract

Recent reports of volatilization of metals from the aquatic environment demonstrate a previously unsuspected loss from the aquatic metal budget. Volatilization can occur by various mechanisms. Arsenic volatilizes from the aquatic environment as trimethyl- and dimethylarsine formed by biomethylation1; plants and soils form volatile selenium compounds2; volatilization of mercury from the oceans might rival that of anthropogenic origin3; maritime air can contain a significantly higher fraction of alkyl-lead compounds to total lead than continental or urban air4. Finally, increasing evidence suggests the potential importance of tin volatilization through formation of tetramethyltin by chemical or biological methylation in the environment5–7. We recently described possible formation of tetramethyltin by the macroalgae Enteromorpha sp. under oxic conditions6. Here we examine the contribution of decaying algal material to environmental cycling of tin by describing formation of volatile stannane (SnH4) in anoxic environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mukai, H., Ambe, Y., Muku, T., Takeshita, K. & Fukuma, T. Nature 324, 239–241 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Zieve, R. & Peterson, P. J. Sci. tot. Envir. 32, 197–202 (1984).

    Article  CAS  Google Scholar 

  3. Kim, J. P. & Fitzgerald, W. F. Science 231, 1131–1133 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Hewitt, C. N. & Harrison, R. M. Envir. Sci. Technol. 21, 260–266 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Craig, P. J. & Rapsomanikis, S. Envir. Technol. Lett. 5, 407–416 (1984).

    Article  CAS  Google Scholar 

  6. Donard, O. F. X., Short, F. T. & Weber, J. H. Can. J. Fish. aquat. Sci. 44, 140–145 (1987).

    Article  CAS  Google Scholar 

  7. Byrd, J. T. & Andreae, M. O. Science 218, 565–569 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Lovelock, J. E. Nature, Lond. 256, 193–194 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Gschwend, P. M., MacFarlane, J. K. & Newman, K. A. Science 227, 1033–1035 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Craig, P. J. & Rapsomanikis, S. Envir. Sci. Technol. 19, 726–730 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Rapsomanikis, S. & Weber, J. H. Envir. Sci. Technol. 19, 352–356 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Ring, R. M. & Weber, J. H. Sci. tot. Envir. (in the press).

  13. Donard, O. F. X., Rapsomanikis, S. & Weber, J. H. Analyt. Chem. 58, 772–777 (1986).

    Article  CAS  Google Scholar 

  14. Randall, L., Donard, O. F. X. & Weber, J. H. Analyt. Chem. 184, 197–203 (1986).

    Article  CAS  Google Scholar 

  15. Jackson, J. A., Blair, W. R., Brinckman, F. E. & Iverson, W. P. Envir. Sci. Technol. 16, 110–119 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Andreae, M. O. in Organometallic Compounds in the Environment (ed. Craig, P. C.) 198–228 (Longman, London, 1986).

    Google Scholar 

  17. Zeikus, J. G. Bacteriol. Rev. 41, 514–541 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Martens, C. S. & Berner, R. A. Science 185, 1167–1169 (1974).

    Article  ADS  CAS  Google Scholar 

  19. Gilmour, C. C., Tuttle, J. H. & Means, J. C. in Marine and Estuarine Geochemistry (ed. Sigleo, A. C. & Hattori, A.) 239–258 (Lewis, Chelsea, MI, 1985).

    Google Scholar 

  20. Bartlett, K. B., Harriss, R. C. & Sebacher, D. L. J. geophys. Res. 90, 5710–5720 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Cooper, D. J. et al. Atmos. Envir. 21, 7–12 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donard, O., Weber, J. Volatilization of tin as stannane in anoxic environments. Nature 332, 339–341 (1988). https://doi.org/10.1038/332339a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332339a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing