Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A test of the massive binary black hole hypothesis: Arp 102B

Abstract

The emissionline spectra of several active galactic nuclei (AGNs) have broad peaks which are significantly displaced in velocity with respect to the host galaxy. An interpretation of this effect in terms of orbital motion of a binary black hole predicts periods of a few centuries1,2. Here we point out that recent measurements of the masses and sizes of many lowluminosity AGNs imply orbital periods much shorter than this. In particular, we find that the elliptical galaxy Arp 102B is the most likely candidate for observation of radial velocity variations; its period is expected to be 3 yr. We have monitored the Ha line profile of Arp 102B for 5 yr without detecting any change in velocity, and thus find that a rather restrictive observational test of the massive binary black hole hypothesis already exists, albeit for this one object.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gaskell, C. M. Liege Astrophysical Colloq. 24, 473–477 (1983).

    ADS  Google Scholar 

  2. Begelman, M. C., Blandford, R. D. & Rees, M. J. Nature 287, 307–309 (1980).

    Article  ADS  Google Scholar 

  3. Osterbrock, D. E., Koski, A. T. & Phillips, M. M. Astrophys. J. 206, 898–909 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Shaffer, R., Ward, M. & Barr, P. Space Sci. Rev. 40, 637–641 (1983).

    ADS  Google Scholar 

  5. Clavel, J. & Wamsteker, W. Astrophys. J. 320, L9–L14 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Barr, P. & Mushotzsky, R. F. Nature 320, 421–423 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Wandel, A. & Mushotzky, R. F. Astrophys. J. 306, L61–L65 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Tennant, A. F. & Mushotzky, R. F. Astrophys. J. 264, 92–104 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Lawrence, A., Watson, M. G., Pounds, K. A. & Elvis, M. Mon. Not. R. astr. Soc. 217, 685–699 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Pounds, K. A., Turner, T. J. & Warwick, R. S. Mon. Not. R. astr. Soc. 221, 7P–12P (1986).

    Article  ADS  CAS  Google Scholar 

  11. McHardy, I. & Czerny, B. Nature 325, 696–698 (1987).

    Article  ADS  Google Scholar 

  12. Turner, T. J. Mon. Not. R. astr. Soc. 226, 9P–13P (1987).

    Article  ADS  CAS  Google Scholar 

  13. Gaskell, C. M. & Sparke, L. S. Astrophys. J. 305, 175–186 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Puschell, J. J., Moore, R., Cohen, R. D., Owen, F. N. & Phillips, A. C. Astr. J. 91, 751–754 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Biermann, P., Kronberg, P. P., Preuss, E., Schilizzi, R. T. & Shaffer, D. B. Astrophys. J. 250, L49–L53 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Stauffer, J., Schild, R. & Keel, W. Astrophys. J. 270, 465–470 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Halpern, J. P. & Oke, J. B. Astrophys. J. 301, 753–758 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Filippenko, A. V. & Sargent, W. L. W. Astrophys. J. Suppl. 57, 503–522 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Peterson, B. M., Korista, K. T. & Cota, S. A. Astrophys. J. 312, L1–L4 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Gaskell, C. M. Nature 315, 386 (1985).

    Article  ADS  Google Scholar 

  21. Arp, H. C. Atlas of Peculiar Galaxies (California Institute of Technology, Pasadena, 1966).

    Book  Google Scholar 

  22. Stover, R. J. Astrophys. J. 248, 684–695 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Smak, J. Acta astr. 19, 155–164 (1969).

    ADS  Google Scholar 

  24. Huang, S. Astrophys. J. 171, 549–564 (1972).

    Article  ADS  CAS  Google Scholar 

  25. Gerbal, D. & Pelat, D. Astr. Astrophys. 95, 18–23 (1981).

    ADS  Google Scholar 

  26. Mathews, W. G. Astrophys. J. 258, 425–433 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Oke, J. B. in Superluminal Radio Sources (eds Zensus, J. A. & Pearson, T. J.) 267–272 (Cambridge University Press, 1987).

    Google Scholar 

  28. Watson, M. G., Stewart, G. C., Brinkmann, W. & King, A. R. Mon. Not. R. astr. Soc. 222, 261–271 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halpern, J., Filippenko, A. A test of the massive binary black hole hypothesis: Arp 102B. Nature 331, 46–48 (1988). https://doi.org/10.1038/331046a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331046a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing