Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy progress and prospects: Duchenne muscular dystrophy

Abstract

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder affecting 1/3500 male births. There is currently no effective treatment, but gene therapy approaches are offering viable avenues for treatment development. The last 10 years have seen the development of a number of strategies and tools for muscle gene therapy. However, the major hurdle has been the inability to deliver vectors at high enough efficiency via a systemic route. The last 2–3 years (reviewed here) have seen unrivalled progress in efficient systemic delivery of viral and non-viral gene transfer agents and antisense oligonucleotides. This progress, coupled with the successful completion of the first gene therapy clinical trial for DMD, has led to three more clinical trials planned for the immediate future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Romero NB, Braun S, Benveniste O, Leturcq F, Hogrel JY, Morris GE et al. Phase I study of dystrophin plasmid-based gene therapy in Duchenne/Becker muscular dystrophy. Hum Gene Ther 2004; 15: 1065–1076.

    Article  CAS  PubMed  Google Scholar 

  2. Lu QL, Bou-Gharios G, Partridge TA . Non-viral gene delivery in skeletal muscle: a protein factory. Gene Therapy 2003; 10: 131–142.

    Article  CAS  PubMed  Google Scholar 

  3. Garg S, Oran AE, Hon H, Jacob J . The hybrid cytomegalovirus enhancer/chicken beta-actin promoter along with woodchuck hepatitis virus posttranscriptional regulatory element enhances the protective efficacy of DNA vaccines. J Immunol 2004; 173: 550–558.

    Article  CAS  PubMed  Google Scholar 

  4. Hlavaty J, Schittmayer M, Stracke A, Jandl G, Knapp E, Felber BK et al. Effect of posttranscriptional regulatory elements on transgene expression and virus production in the context of retrovirus vectors. Virology 2005; 341: 1–11.

    Article  CAS  PubMed  Google Scholar 

  5. Kingsman SM, Mitrophanous K, Olsen JC . Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Therapy 2005; 12: 3–4.

    Article  CAS  PubMed  Google Scholar 

  6. Nash KL, Jamil B, Maguire AJ, Alexander GJ, Lever AM . Hepatocyte-specific gene expression from integrated lentiviral vectors. J Gene Med 2004; 6: 974–983.

    Article  CAS  PubMed  Google Scholar 

  7. Azzouz M, Ralph S, Wong LF, Day D, Askham Z, Barber RD et al. Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector. Neuroreport 2004; 15: 985–990.

    Article  CAS  PubMed  Google Scholar 

  8. Garmory HS, Brown KA, Titball RW . DNA vaccines: improving expression of antigens. Genet Vaccines Ther 2003; 1: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Richard P, Bossard F, Desigaux L, Lanctin C, Bello-Roufai M, Pitard B . Amphiphilic block copolymers promote gene delivery in vivo to pathological skeletal muscles. Hum Gene Ther 2005; 16: 1318–1324.

    Article  CAS  PubMed  Google Scholar 

  10. Lu QL, Liang HD, Partridge T, Blomley MJ . Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Therapy 2003; 10: 396–405.

    Article  CAS  PubMed  Google Scholar 

  11. Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV . Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 2003; 108: 1022–1026.

    Article  PubMed  Google Scholar 

  12. Bloquel C, Fabre E, Bureau MF, Scherman D . Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J Gene Med 2004; 6 (Suppl 1): S11–S23.

    Article  CAS  PubMed  Google Scholar 

  13. Andre F, Mir LM . DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Therapy 2004; 11 (Suppl 1): S33–S42.

    Article  CAS  PubMed  Google Scholar 

  14. Ferrer A, Foster H, Wells KE, Dickson G, Wells DJ . Long-term expression of full-length human dystrophin in transgenic mdx mice expressing internally deleted human dystrophins. Gene Therapy 2004; 11: 884–893.

    Article  CAS  PubMed  Google Scholar 

  15. Leroy-Willig A, Bureau MF, Scherman D, Carlier PG . In vivo NMR imaging evaluation of efficiency and toxicity of gene electrotransfer in rat muscle. Gene Therapy 2005; 12: 1434–1443.

    Article  CAS  PubMed  Google Scholar 

  16. Bertoni C, Jarrahian S, Wheeler TM, Li Y, Olivares EC, Calos MP et al. Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc Natl Acad Sci USA 2006; 103: 419–424.

    Article  CAS  PubMed  Google Scholar 

  17. Danialou G, Comtois AS, Matecki S, Nalbantoglu J, Karpati G, Gilbert R et al. Optimization of regional intra-arterial naked DNA-mediated transgene delivery to skeletal muscles in a large animal model. Mol Ther 2005; 11: 257–266.

    Article  CAS  PubMed  Google Scholar 

  18. Liang KW, Nishikawa M, Liu F, Sun B, Ye Q, Huang L . Restoration of dystrophin expression in mdx mice by intravascular injection of naked DNA containing full-length dystrophin cDNA. Gene Therapy 2004; 11: 901–908.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang G, Ludtke JJ, Thioudellet C, Kleinpeter P, Antoniou M, Herweijer H et al. Intra-arterial delivery of naked plasmid DNA expressing full-length mouse dystrophin in the mdx mouse model of Duchenne muscular dystrophy. Hum Gene Ther 2004; 15: 770–782.

    Article  CAS  PubMed  Google Scholar 

  20. Hagstrom JE, Hegge J, Zhang G, Noble M, Budker V, Lewis DL et al. A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol Ther 2004; 10: 386–398.

    Article  CAS  PubMed  Google Scholar 

  21. Athanasopoulos T, Graham IR, Foster H, Dickson G . Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Therapy 2004; 11 (Suppl 1): S109–S121.

    Article  CAS  PubMed  Google Scholar 

  22. Blankinship MJ, Gregorevic P, Chamberlain JS . Gene therapy strategies for Duchenne muscular dystrophy utilizing recombinant adeno-associated virus vectors. Mol Ther 2006; 13: 241–249.

    Article  CAS  PubMed  Google Scholar 

  23. Liu M, Yue Y, Harper SQ, Grange RW, Chamberlain JS, Duan D . Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. Mol Ther 2005; 11: 245–256.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshimura M, Sakamoto M, Ikemoto M, Mochizuki Y, Yuasa K, Miyagoe-Suzuki Y et al. AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol Ther 2004; 10: 821–828.

    Article  CAS  PubMed  Google Scholar 

  25. Gao G, Vandenberghe LH, Wilson JM . New recombinant serotypes of AAV vectors. Curr Gene Ther 2005; 5: 285–297.

    Article  CAS  PubMed  Google Scholar 

  26. Louboutin JP, Wang L, Wilson JM . Gene transfer into skeletal muscle using novel AAV serotypes. J Gene Med 2005; 7: 442–451.

    Article  CAS  PubMed  Google Scholar 

  27. Gonin P, Arandel L, Van Wittenberghe L, Marais T, Perez N, Danos O . Femoral intra-arterial injection: a tool to deliver and assess recombinant AAV constructs in rodents whole hind limb. J Gene Med 2005; 7: 782–791.

    Article  CAS  PubMed  Google Scholar 

  28. Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC, Garcia L et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 2004; 306: 1796–1799.

    Article  CAS  PubMed  Google Scholar 

  29. Su LT, Gopal K, Wang Z, Yin X, Nelson A, Kozyak BW et al. Uniform scale-independent gene transfer to striated muscle after transvenular extravasation of vector. Circulation 2005; 112: 1780–1788.

    Article  CAS  PubMed  Google Scholar 

  30. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakai H, Fuess S, Storm TA, Muramatsu S, Nara Y, Kay MA . Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol 2005; 79: 214–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  PubMed  Google Scholar 

  33. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV . Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 2006; 24: 198–204.

    Article  CAS  PubMed  Google Scholar 

  34. Muzyczka N, Warrington Jr KH . Custom adeno-associated virus capsids: the next generation of recombinant vectors with novel tropism. Hum Gene Ther 2005; 16: 408–416.

    Article  CAS  PubMed  Google Scholar 

  35. Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 2006; 107: 2653–2661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 2004; 78: 6381–6388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmidt M, Katano H, Bossis I, Chiorini JA . Cloning and characterization of a bovine adeno-associated virus. J Virol 2004; 78: 6509–6516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao G, Lu Y, Calcedo R, Grant RL, Bell P, Wang L et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther 2006; 13: 77–87.

    Article  CAS  PubMed  Google Scholar 

  39. Miller DG, Trobridge GD, Petek LM, Jacobs MA, Kaul R, Russell DW . Large-scale analysis of adeno-associated virus vector integration sites in normal human cells. J Virol 2005; 79: 11434–11442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pachori AS, Melo LG, Zhang L, Loda M, Pratt RE, Dzau VJ . Potential for germ line transmission after intramyocardial gene delivery by adeno-associated virus. Biochem Biophys Res Commun 2004; 313: 528–533.

    Article  CAS  PubMed  Google Scholar 

  41. Ghosh A, Yue Y, Duan D . Viral serotype and the transgene sequence influence overlapping adeno-associated viral (AAV) vector-mediated gene transfer in skeletal muscle. J Gene Med 2006; 8: 298–305.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu Z, Yue Y, Lai Y, Ye C, Qiu J, Pintel DJ et al. Trans-splicing adeno-associated viral vector-mediated gene therapy is limited by the accumulation of spliced mRNA but not by dual vector coinfection efficiency. Hum Gene Ther 2004; 15: 896–905.

    Article  CAS  PubMed  Google Scholar 

  43. Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 2005; 23: 1435–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aartsma-Rus A, De Winter CL, Janson AA, Kaman WE, Van Ommen GJ, Den Dunnen JT et al. Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping: indication for steric hindrance of SR protein binding sites. Oligonucleotides 2005; 15: 284–297.

    Article  CAS  PubMed  Google Scholar 

  45. Graham IR, Hill VJ, Manoharan M, Inamati GB, Dickson G . Towards a therapeutic inhibition of dystrophin exon 23 splicing in mdx mouse muscle induced by antisense oligoribonucleotides (splicomers): target sequence optimisation using oligonucleotide arrays. J Gene Med 2004; 6: 1149–1158.

    Article  CAS  PubMed  Google Scholar 

  46. Lu QL, Mann CJ, Lou F, Bou-Gharios G, Morris GE, Xue SA et al. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 2003; 9: 1009–1014.

    Article  CAS  PubMed  Google Scholar 

  47. Aartsma-Rus A, Janson AA, Kaman WE, Bremmer-Bout M, den Dunnen JT, Baas F et al. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet 2003; 12: 907–914.

    Article  CAS  PubMed  Google Scholar 

  48. Aartsma-Rus A, Janson AA, Kaman WE, Bremmer-Bout M, van Ommen GJ, den Dunnen JT et al. Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am J Hum Genet 2004; 74: 83–92.

    Article  CAS  PubMed  Google Scholar 

  49. Torelli S, Brown SC, Jimenez-Mallebrera C, Feng L, Muntoni F, Sewry CA . Absence of neuronal nitric oxide synthase (nNOS) as a pathological marker for the diagnosis of Becker muscular dystrophy with rod domain deletions. Neuropathol Appl Neurobiol 2004; 30: 540–545.

    Article  CAS  PubMed  Google Scholar 

  50. Bremmer-Bout M, Aartsma-Rus A, de Meijer EJ, Kaman WE, Janson AA, Vossen RH et al. Targeted exon skipping in transgenic hDMD mice: a model for direct preclinical screening of human-specific antisense oligonucleotides. Mol Ther 2004; 10: 232–240.

    Article  CAS  PubMed  Google Scholar 

  51. Aartsma-Rus A, Kaman WE, Bremmer-Bout M, Janson AA, den Dunnen JT, van Ommen GJ et al. Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells. Gene Therapy 2004; 11: 1391–1398.

    Article  CAS  PubMed  Google Scholar 

  52. Surono A, Van Khanh T, Takeshima Y, Wada H, Yagi M, Takagi M et al. Chimeric RNA/ethylene-bridged nucleic acids promote dystrophin expression in myocytes of Duchenne muscular dystrophy by inducing skipping of the nonsense mutation-encoding exon. Hum Gene Ther 2004; 15: 749–757.

    Article  CAS  PubMed  Google Scholar 

  53. Yagi M, Takeshima Y, Surono A, Takagi M, Koizumi M, Matsuo M . Chimeric RNA and 2′-O, 4′-C-ethylene-bridged nucleic acids have stronger activity than phosphorothioate oligodeoxynucleotides in induction of exon 19 skipping in dystrophin mRNA. Oligonucleotides 2004; 14: 33–40.

    Article  CAS  PubMed  Google Scholar 

  54. Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD et al. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 2006; 12: 175–177.

    Article  CAS  PubMed  Google Scholar 

  55. Fletcher S, Honeyman K, Fall AM, Harding PL, Johnsen RD, Wilton SD . Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J Gene Med 2006; 8: 207–216.

    Article  CAS  PubMed  Google Scholar 

  56. Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, Alter J et al. Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci USA 2005; 102: 198–203.

    Article  CAS  PubMed  Google Scholar 

  57. Brun C, Suter D, Pauli C, Dunant P, Lochmuller H, Burgunder JM et al. U7 snRNAs induce correction of mutated dystrophin pre-mRNA by exon skipping. Cell Mol Life Sci 2003; 60: 557–566.

    Article  CAS  PubMed  Google Scholar 

  58. Denti MA, Rosa A, D'Antona G, Sthandier O, De Angelis FG, Nicoletti C et al. Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proc Natl Acad Sci USA 2006; 103: 3758–3763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Muntoni F, Bushby K, van Ommen G . 128th ENMC International Workshop on ‘Preclinical Optimization and Phase I/II Clinical Trials Using Antisense Oligonucleotides in Duchenne Muscular Dystrophy’ 22–24 October 2004, Naarden, The Netherlands. Neuromuscul Disord 2005; 15: 450–457.

    Article  PubMed  Google Scholar 

  60. Goldspink G . Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology (Bethesda) 2005; 20: 232–238.

    CAS  Google Scholar 

  61. Goldspink G . Impairment of IGF-I gene splicing and MGF expression associated with muscle wasting. Int J Biochem Cell Biol 2006; 38: 481–489.

    Article  CAS  PubMed  Google Scholar 

  62. Shavlakadze T, Winn N, Rosenthal N, Grounds MD . Reconciling data from transgenic mice that overexpress IGF-I specifically in skeletal muscle. Growth Horm IGF Res 2005; 15: 4–18.

    Article  CAS  PubMed  Google Scholar 

  63. Tidball JG . Mechanical signal transduction in skeletal muscle growth and adaptation. J Appl Physiol 2005; 98: 1900–1908.

    Article  CAS  PubMed  Google Scholar 

  64. Glass DJ . Molecular mechanisms modulating muscle mass. Trends Mol Med 2003; 9: 344–350.

    Article  CAS  PubMed  Google Scholar 

  65. Sartorelli V, Fulco M . Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy. Sci STKE 2004; 2004: re11.

    PubMed  Google Scholar 

  66. Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL . IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab 2004; 287: E591–E601.

    Article  CAS  PubMed  Google Scholar 

  67. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004; 117: 399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 2004; 14: 395–403.

    Article  CAS  PubMed  Google Scholar 

  69. Haddad F, Baldwin KM, Tesch PA . Pretranslational markers of contractile protein expression in human skeletal muscle: effect of limb unloading plus resistance exercise. J Appl Physiol 2005; 98: 46–52.

    Article  CAS  PubMed  Google Scholar 

  70. Hill M, Wernig A, Goldspink G . Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat 2003; 203: 89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang SY, Goldspink G . Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett 2002; 522: 156–160.

    Article  CAS  PubMed  Google Scholar 

  72. Sacco A, Doyonnas R, LaBarge MA, Hammer MM, Kraft P, Blau HM . IGF-I increases bone marrow contribution to adult skeletal muscle and enhances the fusion of myelomonocytic precursors. J Cell Biol 2005; 171: 483–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Abmayr S, Gregorevic P, Allen JM, Chamberlain JS . Phenotypic improvement of dystrophic muscles by rAAV/microdystrophin vectors is augmented by Igf1 codelivery. Mol Ther 2005; 12: 441–450.

    Article  CAS  PubMed  Google Scholar 

  74. Chen ZY, He CY, Ehrhardt A, Kay MA . Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 2003; 8: 495–500.

    Article  CAS  PubMed  Google Scholar 

  75. Chen ZY, He CY, Kay MA . Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Hum Gene Ther 2005; 16: 126–131.

    Article  CAS  PubMed  Google Scholar 

  76. Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S et al. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 2003; 300: 965–971.

    Article  CAS  PubMed  Google Scholar 

  77. Wagner KR, Liu X, Chang X, Allen RE . Muscle regeneration in the prolonged absence of myostatin. Proc Natl Acad Sci USA 2005; 102: 2519–2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McCroskery S, Thomas M, Platt L, Hennebry A, Nishimura T, McLeay L et al. Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. J Cell Sci 2005; 118: 3531–3541.

    Article  CAS  PubMed  Google Scholar 

  79. Bogdanovich S, Perkins KJ, Krag TO, Whittemore LA, Khurana TS . Myostatin propeptide-mediated amelioration of dystrophic pathophysiology. FASEB J 2005; 19: 543–549.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J G Dickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, K., Foster, H. & Dickson, J. Gene therapy progress and prospects: Duchenne muscular dystrophy. Gene Ther 13, 1677–1685 (2006). https://doi.org/10.1038/sj.gt.3302877

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302877

Keywords

This article is cited by

Search

Quick links