Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Glucose-6-phosphate transporter gene therapy corrects metabolic and myeloid abnormalities in glycogen storage disease type Ib mice

Abstract

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT), an endoplasmic reticulum-associated transmembrane protein that is ubiquitously expressed. GSD-Ib patients suffer from disturbed glucose homeostasis and myeloid dysfunctions. To evaluate the feasibility of gene replacement therapy for GSD-Ib, we have infused adenoviral (Ad) vector containing human G6PT (Ad-hG6PT) into G6PT-deficient (G6PT−/−) mice that manifest symptoms characteristics of the human disorder. Ad-hG6PT infusion restores significant levels of G6PT mRNA expression in the liver, bone marrow and spleen, and corrects metabolic as well as myeloid abnormalities in G6PT−/− mice. The G6PT−/− mice receiving gene therapy exhibit improved growth; normalized serum profiles for glucose, cholesterol, triglyceride, uric acid and lactic acid; and reduced hepatic glycogen deposition. The therapy also corrects neutropenia and lowers the elevated serum levels of granulocyte colony-stimulating factor. The development of bone and spleen in the infused G6PT−/− mice is improved and accompanied by increased cellularity and normalized myeloid progenitor cell frequencies in both tissues. This effective use of gene therapy to correct metabolic imbalances and myeloid dysfunctions in GSD-Ib mice holds promise for the future of gene therapy in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chou JY, Matern D, Mansfield BC, Chen YT . Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr Mol Med 2002; 2: 121–143.

    Article  CAS  Google Scholar 

  2. Chen Y-T . Glycogen storage diseases.In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds). The Metabolic and Molecular Bases of Inherited Disease, 8th edn. McGraw-Hill Inc.: New York, 2001, pp 1521–1551.

    Google Scholar 

  3. Lin B, Annabi B, Hiraiwa H, Pan C-J, Chou JY . Cloning and characterization of cDNAs encoding a candidate glycogen storage disease type 1b protein in rodents. J Biol Chem 1998; 273: 31656–31670.

    Article  CAS  Google Scholar 

  4. Gitzelmann R, Bosshard NU . Defective neutrophil and monocyte functions in glycogen storage disease type 1b: a literature review. Eur J Pediatr 1993; 152: S33–S38.

    Article  Google Scholar 

  5. Garty B, Douglas S, Danon YL . Immune deficiency in glycogen storage disease type 1b. Isr J Med Sci 1996; 32: 1276–1281.

    CAS  PubMed  Google Scholar 

  6. Chou JY, Mansfield BC . Glucose-6-phosphate transporter: the key to glycogen storage disease type Ib.In: Broer S, Wagner CA (eds). Membrane Transporter Diseases. Kluwer Academic/Plenum Publishers: New York, 2003, pp 191–205.

    Chapter  Google Scholar 

  7. Greene HL, Slonim AE, O’Neill Jr JA, Burr IM . Continuous nocturnal intragastric feeding for management of type 1 glycogen-storage disease. N Engl J Med 1976; 294: 423–425.

    Article  CAS  Google Scholar 

  8. Chen YT, Cornblath M, Sidbury JB . Cornstarch therapy in type I glycogen storage disease. N Engl J Med 1984; 310: 171–175.

    Article  CAS  Google Scholar 

  9. Schroten H, Roesler J, Breidenbach T, Wendel U, Elsner J, Schweitzer S et al. Granulocyte and granulocyte–macrophage colony-stimulating factors for treatment of neutropenia in glycogen storage disease type Ib. J Pediatr 1991; 119: 748–754.

    Article  CAS  Google Scholar 

  10. Roe TF, Coates TD, Thomas DW, Miller JH, Gilsanz V . Brief report: treatment of chronic inflammatory bowel disease in glycogen storage disease type Ib with colony-stimulating factors. N Engl J Med 1992; 326: 1666–1669.

    Article  CAS  Google Scholar 

  11. Pan C-J, Lin B, Chou JY . Transmembrane topology of human glucose-6-phosphate transporter. J Biol Chem 1999; 274: 13865–13869.

    Article  CAS  Google Scholar 

  12. Chen L-Y, Shieh J-J, Lin B, Pan C-J, Gao J-L, Murphy PM et al. Impaired glucose homeostasis, neutrophil rafficking and function in mice lacking the glucose-6-phosphate transporter. Hum Mol Genet 2003; 12: 2547–2558.

    Article  CAS  Google Scholar 

  13. Pan C-J, Kei K-J, Chen H, Ward JM, Chou JY . Ontogeny of the murine glucose-6-phosphatase system. Arch Biochem Biophys 1998; 358: 17–24.

    Article  CAS  Google Scholar 

  14. Sieff CA, Nathan DG, Clark SC . The anatomy and physiology of hematopoiesis. In: Nathon DG, Orkin SH (eds). Hematology of Infancy and Childhood, 5th edn, vol.1. WB Saunders: Philadelphia, 1998, pp 161–236.

    Google Scholar 

  15. Wolber FM, Leonard E, Michael S, Orschell-Traycoff CM, Yoder MC, Srour EF . Roles of spleen and liver in development of the murine hematopoietic system. Exp Hematol 2002; 30: 1010–1019.

    Article  CAS  Google Scholar 

  16. Lei K-J, Chen H, Pan C-J, Ward JM, Mosinger B, Lee EJ et al. Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type 1a mouse. Nat Genet 1996; 13: 203–209.

    Article  CAS  Google Scholar 

  17. Hiraiwa H, Pan C-J, Lin B, Moses SW, Chou JY . Inactivation of the glucose-6-phosphate transporter causes glycogen storage disease type 1b. J Biol Chem 1999; 274: 5532–5536.

    Article  CAS  Google Scholar 

  18. Lachaux A, Boillot O, Stamm D, Canterino I, Dumontet C, Regnier F et al. Treatment with lenograstim (glycosylated recombinant human granulocyte colony-stimulating factor) and orthotopic liver transplantation for glycogen storage disease type Ib. J Pediatr 1993; 123: 1005–1008.

    Article  CAS  Google Scholar 

  19. Matern D, Starzl TE, Arnaout W, Barnard J, Bynon JS, Dhawan A et al. Liver transplantation for glycogen storage disease types I, III, and IV. Eur J Pediatr 1999; 158: S43–S48.

    Article  Google Scholar 

  20. Martinez-Olmos MA, Lopez-Sanroman A, Martin-Vaquero P, Molina-Perez E, Barcena R, Vicente E et al. Liver transplantation for type Ib glycogenosis with reversal of cyclic neutropenia. Clin Nutr 2001; 20: 375–377.

    Article  Google Scholar 

  21. Bhattacharya K, Heaton N, Rela M, Walter JH, Lee PJ . The benefits of liver transplantation in glycogenosis type Ib. J Inherit Metab Dis 2004; 27: 539–540.

    Article  CAS  Google Scholar 

  22. Adachi M, Shinkai M, Ohhama Y, Tachibana K, Kuratsuji T, Saji H et al. Improved neutrophil function in a glycogen storage disease type 1b patient after liver transplantation. Eur J Pediatr 2004; 163: 202–206.

    Article  Google Scholar 

  23. Breyer B, Jiang W, Cheng H, Zhou L, Paul R, Feng T et al. Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther 2001; 1: 149–162.

    Article  CAS  Google Scholar 

  24. Carter PJ, Samulski RJ . Adeno-associated viral vectors as gene delivery vehicles. Int J Mol Med 2000; 6: 17–27.

    CAS  Google Scholar 

  25. Mitani K, Graham FL, Caskey CT . Transduction of human bone marrow by adenoviral vector. Hum Gene Ther 1994; 5: 941–948.

    Article  CAS  Google Scholar 

  26. Mitani K, Wakamiya M, Hasty P, Graham FL, Bradley A, Caskey CT . Gene targeting in mouse embryonic stem cells with an adenoviral vector. Somat Cell Mol Genet 1995; 21: 221–231.

    Article  CAS  Google Scholar 

  27. Zhong L, Li W, Li Y, Zhao W, Wu J, Li B et al. Evaluation of primitive murine hematopoietic stem and progenitor cell transduction in vitro and in vivo by recombinant adeno-associated virus vector serotypes 1 through 5. Hum Gene Ther 2006; 17: 321–333.

    Article  CAS  Google Scholar 

  28. Benihoud K, Yeh P, Perricaudet M . Adenovirus vectors for gene delivery. Curr Opin Biotechnol 1999; 10: 440–447.

    Article  CAS  Google Scholar 

  29. Wilson JM . Adenovirus-mediated gene transfer to liver. Adv Drug Deliv Rev 2001; 46: 205–209.

    Article  CAS  Google Scholar 

  30. Palmer DJ, Ng P . Helper-dependent adenoviral vectors for gene therapy. Hum Gene Ther 2005; 16: 1–16.

    Article  CAS  Google Scholar 

  31. Alba R, Bosch A, Chillon M . Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Therapy 2005; 12 (Suppl 1): S18–S27.

    Article  CAS  Google Scholar 

  32. Tenenbaum L, Lehtonen E, Monahan PE . Evaluation of risks related to the use of adeno-associated virus-based vectors. Curr Gene Ther 2003; 3: 545–565.

    Article  CAS  Google Scholar 

  33. Flotte TR . Gene therapy progress and prospects: recombinant adeno-associated virus (rAAV) vectors. Gene Therapy 2004; 11: 805–810.

    Article  CAS  Google Scholar 

  34. Chen L-Y, Pan C-J, Shieh J-J, Chou JY . Structure-function analysis of the glucose-6-phosphate transporter deficient in glycogen storage disease type Ib. Hum Mol Genet 2002; 11: 3199–3207.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Brian C Mansfield for critical reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Y Chou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yiu, W., Pan, CJ., Allamarvdasht, M. et al. Glucose-6-phosphate transporter gene therapy corrects metabolic and myeloid abnormalities in glycogen storage disease type Ib mice. Gene Ther 14, 219–226 (2007). https://doi.org/10.1038/sj.gt.3302869

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302869

Keywords

This article is cited by

Search

Quick links