Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human monocytes expressing a CEA-specific chimeric CD64 receptor specifically target CEA-expressing tumour cells in vitro and in vivo

Abstract

Antibody-dependent cellular cytotoxicity (ADCC) is one means by which macrophages (as well as natural killer cells and granulocytes) elicit a cytotoxic response. This is achieved via interaction of the Fc-γ-receptor (CD64) with the Fc portion of antibody bound to target cells. We have created a chimeric CD64 molecule that incorporates a single chain Fv molecule, targeted against human carcinoembryonic antigen (CEA), fused to the membrane spanning and cytosolic domains of human CD64. Following adenoviral transfer to primary human monocytes, this chimeric CD64 receptor induced antigen-specific cytokine secretion during culture on immobilised CEA protein or on CEA-expressing tumour cells. Moreover, CEA targeted, but not control, monocytes effectively retarded CEA-positive tumour cell growth in vitro. Importantly, targeted monocyte cultures significantly reduced in vivo tumour growth rates in xenograft studies resulting in improved survival rates over that of control monocyte cultures. These data suggest that genetically directing monocytes against tumour antigens may be a useful means of achieving an immunotherapeutic response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bingle L, Brown NJ, Lewis CE . The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002; 196: 254–265.

    Article  CAS  PubMed  Google Scholar 

  2. Andreesen R, Scheibenbogen C, Brugger W, Krause S, Meerpohl HG, Leser HG et al. Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating blood monocytes: a new approach to cancer immunotherapy. Cancer Res 1990; 50: 7450–7456.

    CAS  PubMed  Google Scholar 

  3. Brugger W, Scheibenbogen C, Krause S, Andreesen R . Large-scale production of human tumorcytotoxic macrophages grown from blood monocytes of cancer patients. Cancer Detect Prev 1991; 15: 407–412.

    CAS  PubMed  Google Scholar 

  4. Eymard JC, Lopez M, Cattan A, Bouche O, Adjizian JC, Bernard J . Phase I/II trial of autologous activated macrophages in advanced colorectal cancer. Eur J Cancer 1996; 32A: 1905–1911.

    Article  CAS  PubMed  Google Scholar 

  5. Hennemann B, Rehm A, Kottke A, Meidenbauer N, Andreesen R . Adoptive immunotherapy with tumor-cytotoxic macrophages derived from recombinant human granulocyte-macrophage colony-stimulating factor (rhuGM-CSF) mobilized peripheral blood monocytes. J Immunother 1997; 20: 365–371.

    Article  CAS  PubMed  Google Scholar 

  6. Andreesen R, Hennemann B, Krause SW . Adoptive immunotherapy of cancer using monocyte-derived macrophages: rationale, current status, and perspectives. J Leukocyte Biol 1998; 64: 419–426.

    Article  CAS  PubMed  Google Scholar 

  7. Hennemann B, Beckmann G, Eichelmann A, Rehm A, Andreesen R . Phase I trial of adoptive immunotherapy of cancer patients using monocyte-derived macrophages activated with interferon gamma and lipopolysaccharide. Cancer Immunol Immunother 1998; 45: 250–256.

    Article  CAS  PubMed  Google Scholar 

  8. Monnet I, Breau JL, Moro D, Lena H, Eymard JC, Menard O et al. Intrapleural infusion of activated macrophages and gamma-interferon in malignant pleural mesothelioma: a phase II study. Chest 2002; 121: 1921–1927.

    Article  CAS  PubMed  Google Scholar 

  9. Herlyn D, Koprowski H . IgG2a monoclonal antibodies inhibit human tumor growth through interaction with effector cells. Proc Natl Acad Sci USA 1982; 79: 4761–4765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawase I, Komuta K, Hara H, Inoue T, Hosoe S, Ikeda T et al. Combined therapy of mice bearing a lymphokine-activated killer-resistant tumor with recombinant interleukin 2 and an antitumor monoclonal antibody capable of inducing antibody-dependent cellular cytotoxicity. Cancer Res 1988; 48: 1173–1179.

    CAS  PubMed  Google Scholar 

  11. Dyall R, Vasovic LV, Clynes RA, Nikolic-Zugic J . Cellular requirements for the monoclonal antibody-mediated eradication of an established solid tumor. Eur J Immunol 1999; 29: 30–37.

    Article  CAS  PubMed  Google Scholar 

  12. Clynes R, Takechi Y, Moroi Y, Houghton A, Ravetch JV . Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci USA 1998; 95: 652–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ravetch JV, Bolland S . IgG Fc receptors. Annu Rev Immunol 2001; 19: 275–290.

    Article  CAS  PubMed  Google Scholar 

  14. Michon J, Moutel S, Barbet J, Romet-Lemonne JL, Deo YM, Fridman WH et al. In vitro killing of neuroblastoma cells by neutrophils derived from granulocyte colony-stimulating factor-treated cancer patients using an anti-disialoganglioside/anti-Fc gamma RI bispecific antibody. Blood 1995; 86: 1124–1130.

    CAS  PubMed  Google Scholar 

  15. Russoniello C, Somasundaram C, Schlom J, Deo YM, Keler T . Characterization of a novel bispecific antibody that mediates Fcgamma receptor type I-dependent killing of tumor-associated glycoprotein-72-expressing tumor cells. Clin Cancer Res 1998; 4: 2237–2243.

    CAS  PubMed  Google Scholar 

  16. Goldstein J, Graziano RF, Sundarapandiyan K, Somasundaram C, Deo YM . Cytolytic and cytostatic properties of an anti-human Fc gammaRI (CD64) x epidermal growth factor bispecific fusion protein. J Immunol 1997; 158: 872–879.

    CAS  PubMed  Google Scholar 

  17. Chester KA, Begent RH, Robson L, Keep P, Pedley RB, Boden JA et al. Phage libraries for generation of clinically useful antibodies. Lancet 1994; 343: 455–456.

    Article  CAS  PubMed  Google Scholar 

  18. Gilham DE, O'Neil A, Hughes C, Guest RD, Kirillova N, Lehane M et al. Primary polyclonal human T lymphocytes targeted to carcino-embryonic antigens and neural cell adhesion molecule tumor antigens by CD3zeta-based chimeric immune receptors. J Immunother 2002; 25: 139–151.

    Article  CAS  PubMed  Google Scholar 

  19. Gross G, Waks T, Eshhar Z . Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989; 86: 10024–10028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hwu P, Shafer GE, Treisman J, Schindler DG, Gross G, Cowherd R et al. Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain. J Exp Med 1993; 178: 361–366.

    Article  CAS  PubMed  Google Scholar 

  21. Weijtens ME, Willemsen RA, Valerio D, Stam K, Bolhuis RL . Single chain Ig/gamma gene-redirected human T lymphocytes produce cytokines, specifically lyse tumor cells, and recycle lytic capacity. J Immunol 1996; 157: 836–843.

    CAS  PubMed  Google Scholar 

  22. Hombach A, Koch D, Sircar R, Heuser C, Diehl V, Kruis W et al. A chimeric receptor that selectively targets membrane-bound carcinoembryonic antigen (mCEA) in the presence of soluble CEA. Gene Therapy 1999; 6: 300–304.

    CAS  PubMed  Google Scholar 

  23. Eshhar Z, Waks T, Bendavid A, Schindler DG . Functional expression of chimeric receptor genes in human T cells. J Immunol Methods 2001; 248: 67–76.

    Article  CAS  PubMed  Google Scholar 

  24. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M . Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol 2002; 20: 70–75.

    Article  CAS  PubMed  Google Scholar 

  25. Sheen AJ, Sherlock DJ, Irlam J, Hawkins RE, Gilham DE . T lymphocytes isolated from patients with advanced colorectal cancer are suitable for gene immunotherapy approaches. Br J Cancer 2003; 88: 1119–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chester KA, Robson L, Keep PA, Pedley RB, Boden JA, Boxer GM et al. Production and tumour-binding characterization of a chimeric anti-CEA Fab expressed in Escherichia coli. Int J Cancer 1994; 57: 67–72.

    Article  CAS  PubMed  Google Scholar 

  27. Begent RH, Verhaar MJ, Chester KA, Casey JL, Green AJ, Napier MP et al. Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat Med 1996; 2: 979–984.

    Article  CAS  PubMed  Google Scholar 

  28. Haynes NM, Snook MB, Trapani JA, Cerruti L, Jane SM, Smyth MJ et al. Redirecting mouse CTL against colon carcinoma: superior signaling efficacy of single-chain variable domain chimeras containing TCR-zeta vs Fc epsilon RI-gamma. J Immunol 2001; 166: 182–187.

    Article  CAS  PubMed  Google Scholar 

  29. Burke B, Sumner S, Maitland N, Lewis CE . Macrophages in gene therapy: cellular delivery vehicles and in vivo targets. J Leukocyte Biol 2002; 72: 417–428.

    CAS  PubMed  Google Scholar 

  30. Repp R, van Ojik HH, Valerius T, Groenewegen G, Wieland G, Oetzel C et al. Phase I clinical trial of the bispecific antibody MDX-H210 (anti-FcgammaRI x anti-HER-2/neu) in combination with Filgrastim (G-CSF) for treatment of advanced breast cancer. Br J Cancer 2003; 89: 2234–2243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guest RD, Hawkins RE, Kirillova N, Cheadle EJ, Arnold J, O'Neill A et al. The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J Immunother 2005; 28: 203–211.

    Article  CAS  PubMed  Google Scholar 

  32. Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML . Construction of adenovirus vectors through Cre-lox recombination. J Virol 1997; 71: 1842–1849.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lowenstein P, Shering A, Bain D, Castro M, Wilkinson G . The use of adenoviral vectors to transfer genes to identified target brain cells in vitro. In: Lowenstein P, Enquist L (eds). Protocols for Gene Transfer in Neuroscience: Towards Gene Therapy of Neurological Disorders. John Wiley and Sons: Hoboken, NJ, 1996, pp 93–114.

    Google Scholar 

  34. Southgate T, Kingston P, Castro M . Gene transfer into neural cells. In: Sibley D (ed). Current Protocols in Neuroscience. John Wiley and Sons: Hoboken, NJ, 2000, pp 23.21–24.23.40.

    Google Scholar 

  35. Dion LD, Fang J, Garver Jr RI . Supernatant rescue assay vs polymerase chain reaction for detection of wild type adenovirus-contaminating recombinant adenovirus stocks. J Virol Methods 1996; 56: 99–107.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Robert Hawkins (Medical Oncology, Paterson Institute for Cancer Research, [PICR]) for advice and support and Lorna B Woolford (Cancer Reseach UK Gene Therapy Unit, PICR) for technical assistance. The PICR molecular biology, FACs and BRU core facilities provided invaluable help. This work was supported by Christie Hospital NHS Endowments (AB) and Cancer Research UK (TS, LF, DG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D E Gilham.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biglari, A., Southgate, T., Fairbairn, L. et al. Human monocytes expressing a CEA-specific chimeric CD64 receptor specifically target CEA-expressing tumour cells in vitro and in vivo. Gene Ther 13, 602–610 (2006). https://doi.org/10.1038/sj.gt.3302706

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302706

Keywords

This article is cited by

Search

Quick links