Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Conference Paper
  • Published:

Angiogenic and antiangiogenic gene therapy

Abstract

Gene therapy is thought to be a promising method for the treatment of various diseases. One gene therapy strategy invloves the manipulations on a process of formation of new vessels, commonly defined as angiogenesis. Angiogenic and antiangiogenic gene therapy is a new therapeutic approach to the treatment of cardiovascular and cancer patients, respectively. So far, preclinical and clinical studies are successfully focused mainly on the treatment of coronary artery and peripheral artery diseases. Plasmid vectors are often used in preparations in angiogenic gene therapy trials. The naked plasmid DNA effectively transfects the skeletal muscles or heart and successfully expresses angiogenic genes that are the result of new vessel formation and the improvement of the clinical state of patients. The clinical preliminary data, although very encouraging, need to be well discussed and further study surely continued. It is really possible that further development of molecular biology methods and advances in gene delivery systems will cause therapeutic angiogenesis as well as antiangiogenic methods to become a supplemental or alternative option to the conventional methods of treatment of angiogenic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kohn DB et al. T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nat Med 1998; 4: 775–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. http://www.wiley.co.uk.

  3. Verma IM, Somia N . Gene therapy – promises, problems and prospects. Nature 1997; 389: 239–242.

    CAS  PubMed  Google Scholar 

  4. Gobhans H . Gene therapy – when a simple concept meets a complex reality. Funct Integr Genomics 2000; 1: 142–145.

    Google Scholar 

  5. Rochlitz CF . Gene therapy of cancer. Swiss Med Wkly 2001; 131: 4–9.

    CAS  PubMed  Google Scholar 

  6. Gutierrez AA, Lemoine NR, Sikora K . Gene therapy for cancer. Lancet 1992; 339: 715–721.

    CAS  PubMed  Google Scholar 

  7. Miller AD . Human gene therapy comes of age. Nature 1992; 357: 455–460.

    CAS  PubMed  Google Scholar 

  8. Mulligan RC . The basic science of gene therapy. Science 1993; 260: 926–932.

    CAS  PubMed  Google Scholar 

  9. Philips MI . Somatic gene therapy for hypertension. Braz J Med Biol Res 2000; 33: 715–721.

    Google Scholar 

  10. Khurana R, Martin JF, Zachary I . Gene therapy for cardiovascular disease: a case for cautious optimism. Hypertension 2001; 38: 1210–1216.

    CAS  PubMed  Google Scholar 

  11. Morhishita R . Recent progress in gene therapy for cardiovascular disease. Circ J 2002; 66: 1077–1086.

    Google Scholar 

  12. Isner JM, Vale PR, Symes JF, Losordo DW . Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 2001; 89: 389–400.

    CAS  PubMed  Google Scholar 

  13. Isner JM, Ashara T . Therapeutic angiogenesis. Front Biosci 1998; 3: 49–69.

    Google Scholar 

  14. Harjai KJ, Chowdhurry P, Grines CL . Therapeutic angiogenesis: a fantastic new adventure. J Interven Cardiol 2002; 15: 223–230.

    Google Scholar 

  15. Yla-Harttuala S, Alitalo K . Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 2003; 6: 694–701.

    Google Scholar 

  16. Farrara N, Garber HP, LeCouter J . The biology of VEGF and its receptors. Nat Med 2003; 6: 669–676.

    Google Scholar 

  17. Ferrara N et al. The vascular endothelial growth factor family of polypeptides. J Cell Biochem 1991; 42: 211–218.

    Google Scholar 

  18. Proczka RM, Polanski JA, Malecki M, Wikieł K . The significance of vascular endothelial growth factor in the neoangiogenesis process. The role of hypoxia in the endothelial cells proliferation process and in the formation of collateral circulation. Acta Angiol 2003; 9: 143–149.

    Google Scholar 

  19. Connolly DT . Vascular permeability factor: a unique regulator of blood vessel function. J Cell Biochem 1991; 47: 219–223.

    CAS  PubMed  Google Scholar 

  20. Scapaticci FA . Machanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol 2002; 20: 3906–3927.

    Google Scholar 

  21. Zi-Lai Z, Jin-Hui W, Xin-Yuan L . Current strategies and future directions of antiangiogenic tumor therapy. Acta Biochim Biophys Sin 2003; 35: 873–880.

    Google Scholar 

  22. Holleb AI, Folkman J . Tumor angiogenesis. CA Cancer J Clin 1972; 22: 226–229.

    CAS  PubMed  Google Scholar 

  23. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.

    CAS  PubMed  Google Scholar 

  24. Zhang H-T, Harris AL . Anti-angiogenic therapies in cancer clinical trials. Exp Opin Invest Drugs 1998; 7: 1629–1655.

    CAS  Google Scholar 

  25. Feldman AL, Libutti SK . Progress in antiangiogenic gene therapy of cancer. Cancer 2000; 89: 1181–1194.

    CAS  PubMed  Google Scholar 

  26. Hornig C, Weich HA . Soluble VEGF receptors. Angiogenesis 1999; 3: 33–39.

    CAS  PubMed  Google Scholar 

  27. Brantley DM et al. Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 2002; 10: 7011–7026.

    Google Scholar 

  28. Kendall RL, Thomas KA . Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 1993; 90: 10705–10709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Malecki M et al. Antiangiogenic gene therapy: application of soluble FLT-1 receptor. Adv Clin Exp Med 2004; 13: 227–233.

    Google Scholar 

  30. Yancopoulos GD et al. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242–248.

    CAS  PubMed  Google Scholar 

  31. Battegay EJ . Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. Mol Med 1995; 73: 333–346.

    CAS  Google Scholar 

  32. Kutryk MJB, Stewart DJ . Angiogenesis of the heart. Microsc Res 2003; 60: 138–158.

    Google Scholar 

  33. Davidson B, Reich R, Risberg B, Nesland JM . The biological role and regulation of matrix metalloproteinases (MMP) in cancer. Arkh Patol 2002; 64: 47–53.

    CAS  PubMed  Google Scholar 

  34. Kuzuya M, Iguchi A . Role of matrix metalloproteinases in vascular remodeling. J Atheroscler Thromb 2003; 10: 275–282.

    CAS  PubMed  Google Scholar 

  35. Vaisman N, Gospodarowicz D, Neufeld G . Characterization of the receptors for vascular endothelial growth factor. J Biol Chem 1990; 265: 19461–19466.

    CAS  PubMed  Google Scholar 

  36. Holmgren L, O'Reilly MS, Folkman J . Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 1: 149–153.

    CAS  PubMed  Google Scholar 

  37. Bohle AS, Kalthoff H . Molecular mechanisms of tumor metastasis and angiogenesis. Langenbeck's Arch Surg 1999; 384: 133–140.

    CAS  Google Scholar 

  38. Szala S, Radzikowski C . Molecular basis of neoplastic angiogenesis. J Oncol 1997; 47: 1–19.

    Google Scholar 

  39. Sheta EA, Harding MA, Conaway MR, Theodorescu D . Focal adhesion kinase, Rap1, and transcriptional induction of vascular endothelial growth factor. J Natl Cancer Inst 2000; 92: 1065–1073.

    CAS  PubMed  Google Scholar 

  40. Yu JL et al. Oncogenes as regulators of tissue factor expression in cancer: implications for tumor angiogenesis and anti-cancer therapy. Semin Thromb Hemost 2004; 30: 21–30.

    CAS  PubMed  Google Scholar 

  41. Rak J, Yu JL . Oncogenes and tumor angiogenesis: the question of vascular ‘supply’ and vascular ‘demand’. Semin Cancer Biol 2004; 14: 93–104.

    CAS  PubMed  Google Scholar 

  42. Rak J, Yu JL, Kerbel RS, Coomber BL . What do oncogenic mutations to do with angiogenesis/vascular dependence of tumors? Cancer Res 2002; 62: 1931–1934.

    CAS  PubMed  Google Scholar 

  43. Hayes AJ, Li LY, Lippman ME . Antivascular therapy: a new approach to cancer treatment. BMJ 1999; 318: 853–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Brand K . Cancer gene therapy with tissue inhibitors of metalloproteinases (TIMPs). Curr Gene Ther 2002; 2: 255–271.

    CAS  PubMed  Google Scholar 

  45. Semenza GL . Targeting HF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.

    CAS  PubMed  Google Scholar 

  46. Szala S, Szary J, Cichoñ T, Sochanik A . Antiangiogenic gene therapy in inhibition of metastasis. Acta Biochim Pol 2002; 49: 313–321.

    CAS  PubMed  Google Scholar 

  47. Trochon-Joseph V et al. Evidence of antiangiogenic and antimetastatic activities of the recombinant disintegrin domain of metargidin. Cancer Res 2004; 64: 2062–2069.

    CAS  PubMed  Google Scholar 

  48. Kuba K et al. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res 2000; 60: 6737–6743.

    CAS  PubMed  Google Scholar 

  49. Date K et al. Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene 1998; 17: 3045–3054.

    CAS  PubMed  Google Scholar 

  50. Feldman AL et al. Antiangiogenic gene therapy of cancer utilizing a recombinant adenovirus to elevate systemic endostatin levels in mice. Cancer Res 2000; 60: 1503–1506.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiao F et al. A gene therapy for cancer based on the angiogenesis inhibitor, vasostatin. Gene Therapy 2002; 9: 1207–1213.

    CAS  PubMed  Google Scholar 

  52. Pike SE et al. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 1998; 188: 2349–2356.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yao L et al. Effective targeting of tumor vasculature by the angiogenesis inhibitors vasostatin and interleukin-12. Blood 2000; 96: 1900–1905.

    CAS  PubMed  Google Scholar 

  54. Yamaguchi S, Iwata K, Shibuya M . Soluble Flt-1 (Soluble VEGFR-1), a potent natural antiangiogenic molecule in mammals, is phylogenetically conserved in avians. Biochem Biophys Res Commun 2002; 291: 554–559.

    CAS  PubMed  Google Scholar 

  55. Mori A et al. Soluble Flt-1 gene therapy for peritoneal metastases using HVJ-cationic liposomes. Gene Therapy 2000; 7: 1027–1033.

    CAS  PubMed  Google Scholar 

  56. Yang W et al. sFlt-1 gene transfected fibroblsts: a wound-specific gene therapy inhibits local cancer recurrence. Cancer Res 2001; 61: 7840–7845.

    CAS  PubMed  Google Scholar 

  57. Hoshida T et al. Gene therapy for pancreatic cancer using an adenovirus vector encoding soluble flt-1 vascular endothelial growth factor receptor. Pancreas 2002; 25: 111–121.

    PubMed  Google Scholar 

  58. Takayama K et al. Suppression of tumor angiogenesis and growth by gene transfer of a soluble form of vascular endothelial growth factor receptor into a remote organ. Cancer Res 2000; 60: 2169–2177.

    CAS  PubMed  Google Scholar 

  59. Boehm T, Folkman J, Browder T, O'Reilly MS . Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997; 390: 404–407.

    CAS  PubMed  Google Scholar 

  60. Simons M et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 2000; 102: E73–E86.

    CAS  PubMed  Google Scholar 

  61. Greco O, Scott SD, Marples B, Dachs GU . Cancer gene therapy: ‘delivery, delivery, delivery’. Front Biosci 2002; 7: d1516–d1524.

    PubMed  Google Scholar 

  62. Jain RK . The next frontier of molecular medicine: delivery of therapeutics. Nat Med 1998; 4: 655–657.

    CAS  PubMed  Google Scholar 

  63. Nabel GJ . Development of optimized vectors for gene therapy. Proc Natl Acad Sci USA 1999; 96: 324–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nettelbeck DM, Jerome V, Muller R . Gene therapy designer promoters for tumour targeting. Trends Genet 2000; 16: 174–181.

    CAS  PubMed  Google Scholar 

  65. Krieg AM . Now I know my CpGs. Trends Microbiol 2001; 9: 249–252.

    CAS  PubMed  Google Scholar 

  66. Krieg AM, Davis HL . Enhancing vaccines with immune stimulatory CpG DNA. Curr Opin Mol Ther 2001; 3: 15–24.

    CAS  PubMed  Google Scholar 

  67. Schleef M, Schmidt T . Animal-free production of ccc-supercoiled plasmids for research and clinical applications. J Gene Med 2004; 6: S45–S53.

    CAS  PubMed  Google Scholar 

  68. Stadler J, Lemmens R, Nyhammar T . Plasmid DNA purification. J Gene Med 2004; 6: S54–S66.

    CAS  PubMed  Google Scholar 

  69. Wolff JA et al. Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubules and caveolae of mammalian skeletal muscle. J Cell Sci 1992; 103: 1249–1259.

    CAS  PubMed  Google Scholar 

  70. Garrett DJ et al. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates. BMC Biotechnol 2003; 3: 1–16.

    Google Scholar 

  71. Park J et al. Long-term correction of globotriaosylceramide storage in Fabry mice by recombinant adeno-associated virus-mediated gene transfer. Proc Natl Acad Sci USA 2003; 100: 3450–3454.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. McTaggart S, Al-Rubeai M . Retroviral vectors for human gene delivery. Biotechnol Adv 2002; 20: 1–31.

    CAS  PubMed  Google Scholar 

  73. Marshall E . Gene therapy. Second child in French trial is found to have leukemia. Science 2003; 299: 320.

    CAS  PubMed  Google Scholar 

  74. Lehrman S . Virus treatment questioned after gene therapy death. Nature 1999; 401: 517–518.

    CAS  PubMed  Google Scholar 

  75. Guha C, Chowdhury NR, Chowdhury JR . Recombinant adenoassociated virus in cancer gene therapy. J Hepatol 2000; 32: 1031–1034.

    CAS  PubMed  Google Scholar 

  76. Snyder RO, Flotte TR . Production of clinical-grade recombinant adeno-associated virus vectors. Curr Opin Biotech 2002; 13: 418–423.

    CAS  PubMed  Google Scholar 

  77. Blankinship MJ et al. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther 2004; 10: 671–678.

    CAS  PubMed  Google Scholar 

  78. Du L et al. Differential myocardial gene delivery by recombinant serotype-specific adeno-associated viral vectors. Mol Ther 2004; 10: 604–608.

    CAS  PubMed  Google Scholar 

  79. Schleef M, Schmidt T, Flaschel E . Plasmid DNA for pharmaceutical applications. Dev Biol (Basel) 2000; 104: 25–31.

    CAS  Google Scholar 

  80. Prazeres DM et al. Large-scale production of pharmaceutical-grade plasmid DNA for gene therapy: problems and bottlenecks. Trends Biotechnol 1999; 17: 169–174.

    CAS  PubMed  Google Scholar 

  81. Kendall D, Lye GJ, Levy MS . Purification of plasmid DNA by an integrated operation comprising tangential flow filtration and nitrocellulose adsorption. Biotechnol Bioeng 2002; 79: 816–822.

    CAS  PubMed  Google Scholar 

  82. Schluep T, Cooney CL . Purification of plasmids by triplex affinity interaction. Nucleic Acids Res 1998; 26: 4524–4528.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. http://www.emea.eu.int.

  84. http://www.pheur.org.

  85. Jastrzebski Z, Malecki M, Janik P . Study of the bacterial endotoxins level in the angiogenic plasmid DNA preparations. Farmacja Pol 2003; 59: 171–175.

    Google Scholar 

  86. Lahijani R et al. Quantitation of host cell DNA contaminate in pharmaceutical-grade plasmid DNA using competitive polymerase chain reaction and enzyme-linked immunosorbent assay. Hum Gene Ther 1998; 9: 1173–1180.

    CAS  PubMed  Google Scholar 

  87. Budker V et al. Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J Gene Med 2000; 2: 76–88.

    CAS  PubMed  Google Scholar 

  88. Zhang G et al. Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhuman primates. Hum Gene Ther 2001; 12: 427–438.

    CAS  PubMed  Google Scholar 

  89. Heller L, Coppola D . Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Therapy 2002; 9: 1321–1325.

    CAS  PubMed  Google Scholar 

  90. Liu F, Huang L . Electric gene transfer to the liver following systemic administration of plasmid DNA. Gene Therapy 2002; 9: 1116–1119.

    CAS  PubMed  Google Scholar 

  91. Sanz G, Satkauskas S, Mir LM . In vivo DNA electrotransfer in skeletal muscle. Methods Mol Biol 2004; 245: 227–236.

    CAS  PubMed  Google Scholar 

  92. Hagstrom JE . Plasmid-based gene delivery to target tissues in vivo: the intravascular approach. Curr Opin Mol Ther 2003; 5: 338–344.

    CAS  PubMed  Google Scholar 

  93. Herweijer H, Wolff JA . Progress and prospects: naked DANN gene transfer and therapy. Gene Therapy 2003; 10: 453–458.

    CAS  PubMed  Google Scholar 

  94. Gollins H, McMahon J, Wells KE, Wells DJ . High-efficiency plasmid gene transfer into dystrophic muscle. Gene Therapy 2003; 10: 504–512.

    CAS  PubMed  Google Scholar 

  95. Smith AE . Viral vectors in gene therapy. Annu Rev Microbiol 1995; 49: 807–838.

    CAS  PubMed  Google Scholar 

  96. Buttrick PM . Gene therapy in the cardiovascular system: current strategies and practical limitations. J Am Coll Cardiol 1997; 6: 17–21.

    Google Scholar 

  97. Templeton NS . Liposomal delivery of nucleic acids in vivo. DNA and Cell Biol 2002; 21: 857–867.

    CAS  Google Scholar 

  98. Ferrara N, Alitalo K . Clinical application of angiogenic growth factors and their inhibitors. Nat Med 1999; 5: 1359–1364.

    CAS  PubMed  Google Scholar 

  99. Hamaway AH, Lee LY, Crystal RG, Rosengart TK . Cardiac angiogenesis and gene therapy: a strategy for myocardial revascularization. Curr Opin Cardiol 1999; 14: 515–522.

    Google Scholar 

  100. Rosengart TK, Patel SR, Crystal RG . Therapeutic angiogenesis: proteine and gene therapy delivery strategies. J Cardiovasc Risk 1999; 6: 29–40.

    CAS  PubMed  Google Scholar 

  101. Abo-Auda W, Benza RL . Therapeutic angiogenesis: review of current concepts and future directions. J Heart Lung Transplantation 2003; 22: 370–382.

    Google Scholar 

  102. Unger EF, Banai S, Shou M . Basic fibroblast growth factor enhances myocardial collateral flow in canine model. Am J Physiol 1994; 266: H1588–H1595.

    CAS  PubMed  Google Scholar 

  103. Baffour R et al. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in rabbit model of acute lower limb ischemia: dose–response effect of basic fibroblast growth factor. J Vasc Surg 1992; 16: 181–191.

    CAS  PubMed  Google Scholar 

  104. Banai S, Jaklitsch MT, Shou M . Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Ciculation 1994; 89: 2183–2189.

    CAS  Google Scholar 

  105. Hariawala MD, Horowitz JR, Esakof D . VEGF improves myocardial blood flow but produces EDRF-mediated hypotension in porcine hearts. J Surg Res 1996; 63: 77–82.

    CAS  PubMed  Google Scholar 

  106. Lopez JJ, Laham RJ, Stamler A . VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res 1998; 40: 272–281.

    CAS  PubMed  Google Scholar 

  107. Kornowski R, Fuchs S, Leon M, Epstein SE . Delivery strategies to achieve therapeutic myocardial angiogenesis. Circulation 2000; 101: 454–458.

    CAS  PubMed  Google Scholar 

  108. Laham RJ, Leimbach M, Chronos NA . Intracoronary administration of recombinant fibroblast growth factor-2 in patients with severe CAD: results of phase I. J Am Coll Cardiol 1999; 33 (Suppl A): 333A.

    Google Scholar 

  109. Laham RJ, Sellke FW, Edelman ER . Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary by pass surgery: results of phase I randomized double blind, placebo-controlled trial. Circulation 1999; 100: 1865–1871.

    CAS  PubMed  Google Scholar 

  110. Scumacher B, Pecher P, von Specht BU, Stegmann T . Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 1998; 97: 645–650.

    Google Scholar 

  111. Laham RJ, Selke FW, Edelman ER . Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary by pass surgery: results of phase I randomized double-blind, placebo controlled trial. Circulation 1999; 100: 1865–1871.

    CAS  PubMed  Google Scholar 

  112. Hendel RC, Henry TD, Roha-Singh K . Effect of intracoronary recombinant human vascular endothelial growth factor (rhVEGF) on myocardial perfusion: evidence for a dose dependent effect. Circulation 2000; 101: 118–121.

    CAS  PubMed  Google Scholar 

  113. Henry TD, Annes BH, Azrin MA . Double-blind placebo controlled trial of recombinant human vascular endothelial growth factor: the VIVA trial. J Am Coll Cardiol 1999; 33 (Suppl A): 384A.

    Google Scholar 

  114. Henry TD, Mckendall GR, Azrin MA . VIVA trial: one year follow up. Circulation 2000; 102 (Suppl II): 309.

    Google Scholar 

  115. Nicklin SA, Baker AH . Development of targeted viral vectors for cardiovascular gene therapy. Genet Eng (NY) 2003; 25: 15–49.

    CAS  Google Scholar 

  116. Tsurumi Y, Takeshita S, Chen D . Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 1996; 94: 3281–3290.

    CAS  PubMed  Google Scholar 

  117. Wolff JA, Malone RW, Williams P . Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465–1468.

    CAS  PubMed  Google Scholar 

  118. Thompson RB, Rungwerth K, Koch WJ . Gene therapy for heart failure. Ann Med 2004; 36 (Suppl 1): 106–115.

    CAS  PubMed  Google Scholar 

  119. Mack ChA, Patel SR, Schwarz EA, Zanzonico P . Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion in the ischemic porcine heart. J Thorac Cardiovasc Surg 1998; 115: 168–177.

    CAS  PubMed  Google Scholar 

  120. Asahara T, Bauters Ch, Zeng LuP, Takeshita S . Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 1995; 92: 365–371.

    CAS  Google Scholar 

  121. Kondoh K, Koyama H, Miyata T, Takato T . Conduction performance of collateral vessels induced by vascular endothelial growth factor or basic fibroblast growth factor. Cardiovasc Res 2004; 61: 132–142.

    CAS  PubMed  Google Scholar 

  122. Su H, Lu R, Kan YW . Adeno-associated viral vector-mediated vascular endothelial growth factor gene transfer induces neovascular formation in ischemic heart. Proc Natl Acad Sci USA 2000; 97: 13801–13806.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Isner JM, Pieczek A, Schainfeld R . Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patients with ischemic limb. Lancet 1996; 348: 370–374.

    CAS  PubMed  Google Scholar 

  124. Baugmgartner I, Pieczek A, Manor O . Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel developementin patients with critical ischemia. Circulation 1998; 97: 1114–1123.

    Google Scholar 

  125. Losordo DW, Vale PR, Symes JF . Gene therapy for myocardial angiogenesis; initial clinical results with direct myocardial injection of phVEGF165 as a sole therapy for myocardial ischemia. Circulation 1998; 98: 2800–2804.

    CAS  PubMed  Google Scholar 

  126. Rosengart TK, Lee LY, Patel SR, Sanborn TA . Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VAGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999; 100: 468–474.

    CAS  PubMed  Google Scholar 

  127. Kolsut P et al. Gene therapy of coronary artery disease with phvegf165 – early outcome. Polish Heart J 2003; 59: 373–384.

    Google Scholar 

  128. Vale PR et al. Randomised, single-blind, placebo controlled pilot study catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001; 103: 2138–2143.

    CAS  PubMed  Google Scholar 

  129. Grines C, Rubanyi GM, Kleiman NS, Marrot P . Angiogenic gene therapy with adenovirus 5 fibroblast growth factor-4 (Ad5FGF-4): a new option for the treatment of coronary artery disease. Am J Cardiol 2003; 92 (Suppl): 24N–31N.

    CAS  PubMed  Google Scholar 

  130. Malecki M, Przybyszewska M, Janik P . Construction of a bicistronic proangiogenic expression vector and its application in the experimental angiogenesis in vivo. Acta Biochim Pol 2003; 50: 875–882.

    CAS  PubMed  Google Scholar 

  131. Ibukiyama C . Angiogenesis. Angiogenic therapy using fibroblast growth factor and vascular endothelial growth factor for ischemic vascular lesions. Jpn Heart J 1996; 37: 285–300.

    CAS  PubMed  Google Scholar 

  132. Whitlock PR et al. Adenovirus-mediated transfer of a minigene expressing multiple isoforms of VEGF is more effective at inducing angiogenesis than comparable vectors expressing individual VEGF cDNAs. Mol Ther 2004; 9: 67–75.

    CAS  PubMed  Google Scholar 

  133. Cines DB, Pollak ES, Buck CA . Endothelial cell in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91: 3527–3561.

    CAS  PubMed  Google Scholar 

  134. Kessler P . Biobypass, ready for the NOVA Trial. NOGA Lett 2004; 5: 2–4.

    Google Scholar 

  135. Yamauchi A et al. Pre-administration of angiopoietin-1 followed by VEGF induces functional and mature vascular formation in a rabbit ischemic model. J Gene Med 2003; 5: 994–1004.

    CAS  PubMed  Google Scholar 

  136. Isner JM et al. Arterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease. Hum Gene Ther 1996; 7: 959–988.

    CAS  PubMed  Google Scholar 

  137. Isner JM et al. Treatment of tromboangiitis obliterans (Buerger's disease) by intramuscular gene transfer of VEGF: preliminary clinical results. J Vasc Surg 1998; 28: 964–975.

    CAS  PubMed  Google Scholar 

  138. Baumgartner I et al. Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med 2000; 132: 880–884.

    CAS  PubMed  Google Scholar 

  139. Ozaki H et al. Blockade of vascular endothelial growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol 2000; 156: 697–707.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Celletti FL et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 2001; 7: 425–429.

    CAS  PubMed  Google Scholar 

  141. van Weel V et al. Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo. Circ Res 2004; 95: 58–66.

    CAS  PubMed  Google Scholar 

  142. Mohler ER et al. Adenoviral-mediated gene transfer of vascular endothelial growth factor in critical limb ischemia: safety results from a phase I trial. Vasc Med 2003; 8: 9–13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malecki, M., Kolsut, P. & Proczka, R. Angiogenic and antiangiogenic gene therapy. Gene Ther 12 (Suppl 1), S159–S169 (2005). https://doi.org/10.1038/sj.gt.3302621

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302621

Keywords

This article is cited by

Search

Quick links