Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Regulated and constitutive expression of anti-inflammatory cytokines by nontransforming herpesvirus saimiri vectors

Abstract

Herpesviral saimiri-(HVS) mediated expression of bovine growth hormone was one of the first applications of an episomal viral vector for gene therapy. Meanwhile, the long-term persistence of HVS vectors has been confirmed in a broad spectrum of infectable target cells in vitro and in vivo. Regulated gene expression is useful for many applications of gene therapy. Therefore, we inserted the Mifepristone–antiprogestin-inducible expression system (GeneSwitch™) into HVS viral vectors to regulate the combined expression of anti-inflammatory cytokines, IL-10 and IL-1RA. Constitutive CMV-promoter/enhancer-driven and Mifepristone-inducible cytokine expression was compared in the viral context in transduced primary human fibroblasts and rheumatoid arthritis (RA) fibroblast-like cells (RASF). Long-term persistence of vector genomes was shown for both construct types. Constitutive expression was efficient and more rapid in onset than in the inducible system, in which the selective induction of interleukin expression along with low background levels was obtained by Mifepristone concentrations that were more than 1000-fold below those required for endogenous Progesterone antagonism. Furthermore, transgene expression corresponded to vector doses. Global patterns of cytokine secretion were not significantly changed due to viral transduction, indicating a rather inert behavior of the viral vector itself. In an attempt to emulate the inflammatory cytokine-enriched environment in rheumatoid arthritic joints, the function of the vectors could be demonstrated in vitro by the successful blockade of IL-1β-stimulated matrix-metalloproteinase (MMP)-3 expression from RASF cells. Evaluation of this system in future studies, in suitable long-term SCID models of RA or in non-human primate models, will exploit the possible in vivo benefits of nontransforming HVS vectors in gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Fleckenstein B, Desrosiers RC . Herpesvirus saimiri and herpesvirus ateles. In: Roizman B (ed). The Herpesviruses, Vol. 1. Plenum Press: New York, London, 1982, pp 253–332.

    Chapter  Google Scholar 

  2. Biesinger B, Trimble JJ, Desrosiers RC, Fleckenstein B . The divergence between two oncogenic herpesvirus saimiri strains in a genomic region related to the transforming phenotype. Virology 1990; 176: 505–514.

    Article  CAS  PubMed  Google Scholar 

  3. Medveczky MM et al. Herpesvirus saimiri strains from three DNA subgroups have different oncogenic potentials in New Zealand white rabbits. J Virol 1989; 63: 3601–3611.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Medveczky P, Szomolanyi E, Desrosiers RC, Mulder C . Classification of herpesvirus saimiri into three groups based on extreme variation in a DNA region required for oncogenicity. J Virol 1984; 52: 938–944.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Biesinger B et al. Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proc Natl Acad Sci USA 1992; 89: 3116–3119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fickenscher H et al. Regulation of the herpesvirus saimiri oncogene stpC, similar to that of T-cell activation genes, in growth-transformed human T lymphocytes. J Virol 1996; 70: 6012–6019.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ensser A, Thurau M, Wittmann S, Fickenscher H . The genome of herpesvirus saimiri C488 which is capable of transforming human T cells. Virology 2003; 314: 471–487.

    Article  CAS  PubMed  Google Scholar 

  8. Duboise SM et al. STP and Tip are essential for herpesvirus saimiri oncogenicity. J Virol 1998; 72: 1308–1313.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ensser A, Thurau M, Wittmann S, Fickenscher H . The primary structure of the herpesvirus saimiri strain C488 genome. Virology 2003; 314: 471–487.

    Article  CAS  PubMed  Google Scholar 

  10. Desrosiers RC et al. Synthesis of bovine growth hormone in primates by using a herpesvirus vector. Mol Cell Biol 1985; 5: 2796–2803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Desrosiers RC, Burghoff RL, Bakker A, Kamine J . Construction of replication-competent herpesvirus saimiri deletion mutants. J Virol 1984; 49: 343–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Simmer B et al. Persistence of selectable herpesvirus saimiri in various human haematopoietic and epithelial cell lines. J Gen Virol 1991; 72: 1953–1958.

    Article  PubMed  Google Scholar 

  13. Grassmann R, Fleckenstein B . Selectable recombinant herpesvirus saimiri is capable of persisting in a human T-cell line. J Virol 1989; 63: 1818–1821.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Frolova-Jones EA et al. Stable marker gene transfer into human bone marrow stromal cells and their progenitors using novel herpesvirus saimiri-based vectors. J Hematother Stem Cell Res 2000; 9: 573–581.

    Article  CAS  PubMed  Google Scholar 

  15. Stevenson AJ et al. Specific oncolytic activity of herpesvirus saimiri in pancreatic cancer cells. Br J Cancer 2000; 83: 329–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stevenson AJ et al. Herpesvirus saimiri-based gene delivery vectors maintain heterologous expression throughout mouse embryonic stem cell differentiation in vitro. Gene Therapy 2000; 7: 464–471.

    Article  CAS  PubMed  Google Scholar 

  17. Stevenson AJ et al. A herpesvirus saimiri-based gene therapy vector with potential for use in cancer immunotherapy. Cancer Gene Ther 2000; 7: 1077–1085.

    Article  CAS  PubMed  Google Scholar 

  18. Schmitt I et al. Stimulation of cyclin-dependent kinase activity and G1- to S-phase transition in human lymphocytes by the human T-cell leukemia/lymphotropic virus type 1 Tax protein. J Virol 1998; 72: 633–640.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gossen M et al. Transcriptional activation by tetracyclines in mammalian cells. Science 1995; 268: 1766–1769.

    Article  CAS  PubMed  Google Scholar 

  20. Rivera VM et al. A humanized system for pharmacologic control of gene expression [see comments]. Nat Med 1996; 2: 1028–1032.

    Article  CAS  PubMed  Google Scholar 

  21. Christopherson KS, Mark MR, Bajaj V, Godowski PJ . Ecdysteroid-dependent regulation of genes in mammalian cells by a Drosophila ecdysone receptor and chimeric transactivators. Proc Natl Acad Sci USA 1992; 89: 6314–6318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, O'Malley BWJ, Tsai SY, O'Malley BW . A regulatory system for use in gene transfer. Proc Natl Acad Sci USA 1994; 91: 8180–8184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schäfer A et al. The latency-associated nuclear antigen homolog of herpesvirus saimiri inhibits lytic virus replication. J Virol 2003; 77: 5911–5925.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burcin MM et al. Adenovirus-mediated regulable target gene expression in vivo. Proc Natl Acad Sci USA 1999; 96: 355–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang XJ et al. Development of gene-switch transgenic mice that inducibly express transforming growth factor beta1 in the epidermis. Proc Natl Acad Sci USA 1999; 96: 8483–8488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsai SY et al. A novel RU486 inducible system for the activation and repression of genes. Adv Drug Deliv Rev 1998; 30: 23–31.

    Article  CAS  PubMed  Google Scholar 

  27. Lee DM, Weinblatt ME . Rheumatoid arthritis. Lancet 2001; 358: 903–911.

    Article  CAS  PubMed  Google Scholar 

  28. Muller-Ladner U et al. Human IL-1Ra gene transfer into human synovial fibroblasts is chondroprotective. J Immunol 1997; 158: 3492–3498.

    CAS  PubMed  Google Scholar 

  29. Müller-Ladner U et al. Gene transfer of cytokine inhibitors into human synovial fibroblasts in the SCID mouse model. Arthritis Rheum 1999; 42: 490–497.

    Article  PubMed  Google Scholar 

  30. Neumann E et al. Inhibition of cartilage destruction by double gene transfer of IL-1Ra and IL-10 involves the activin pathway. Gene Therapy 2002; 9: 1508–1519.

    Article  CAS  PubMed  Google Scholar 

  31. Ensser A, Pfinder A, Müller-Fleckenstein I, Fleckenstein B . The URNA genes of herpesvirus saimiri (strain C488) are dispensable for transformation of human T cells in vitro. J Virol 1999; 73: 10551–10555.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tomkinson B et al. Epstein–Barr virus recombinants from overlapping cosmid fragments. J Virol 1993; 67: 7298–7306.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fu S, Deisseroth AB . Use of the cosmid adenoviral vector cloning system for the in vitro construction of recombinant adenoviral vectors. Hum Gene Ther 1997; 8: 1321–1330.

    Article  CAS  PubMed  Google Scholar 

  34. Daniel MD, Silva D, Ma N . Establishment of owl monkey kidney 210 cell line for virological studies. In Vitro 1976; 12: 290.

    Google Scholar 

  35. Muller-Ladner U et al. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol 1996; 149: 1607–1615.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Stevenson AJ et al. Assessment of Herpesvirus saimiri as a potential human gene therapy vector. J Med Virol 1999; 57: 269–277.

    Article  CAS  PubMed  Google Scholar 

  37. Grassmann R et al. Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a Herpesvirus saimiri vector. Proc Natl Acad Sci USA 1989; 86: 3351–3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vegeto E et al. The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell 1992; 69: 703–713.

    Article  CAS  PubMed  Google Scholar 

  39. Cassatella MA et al. Interleukin 10 (IL-10) upregulates IL-1 receptor antagonist production from lipopolysaccharide-stimulated human polymorphonuclear leukocytes by delaying mRNA degradation. J Exp Med 1994; 179: 1695–1699.

    Article  CAS  PubMed  Google Scholar 

  40. Kline JN, Fisher PA, Monick MM, Hunninghake GW . Regulation of interleukin-1 receptor antagonist by Th1 and Th2 cytokines. Am J Physiol 1995; 269 (Part 1): L92–L98.

    CAS  PubMed  Google Scholar 

  41. Denison FC et al. The effect of mifepristone administration on leukocyte populations, matrix metalloproteinases and inflammatory mediators in the first trimester cervix. Mol Hum Reprod 2000; 6: 541–548.

    Article  CAS  PubMed  Google Scholar 

  42. DiBattista JA et al. Glucocorticoid receptor mediated inhibition of interleukin-1 stimulated neutral metalloprotease synthesis in normal human chondrocytes. J Clin Endocrinol Metab 1991; 72: 316–326.

    Article  CAS  PubMed  Google Scholar 

  43. Sarkar NN . Mifepristone: bioavailability, pharmacokinetics and use-effectiveness. Eur J Obstet Gynecol Reprod Biol 2002; 101: 113–120.

    Article  CAS  PubMed  Google Scholar 

  44. Xu ZL, Mizuguchi H, Mayumi T, Hayakawa T . Regulated gene expression from adenovirus vectors: a systematic comparison of various inducible systems. Gene 2003; 309: 145–151.

    Article  CAS  PubMed  Google Scholar 

  45. Hoggarth JH, Jones E, Ensser A, Meredith DM . Functional expression of thymidine kinase in human leukaemic and colorectal cells, delivered as EGFP fusion protein by herpesvirus saimiri-based vector. Cancer Gene Ther 2004; 11: 613–624.

    Article  CAS  PubMed  Google Scholar 

  46. Mengshol JA, Mix KS, Brinckerhoff CE . Matrix metalloproteinases as therapeutic targets in arthritic diseases: bull's-eye or missing the mark? Arthritis Rheum 2002; 46: 13–20.

    Article  CAS  PubMed  Google Scholar 

  47. Robbins PD, Evans CH, Chernajovsky Y . Gene therapy for arthritis. Gene Therapy 2003; 10: 902–911.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Alexandra Schäfer and Elke Heck for critical reading of the manuscript. This project was supported by the Interdisciplinary Center for Clinical Research (IZKF: Genesis, Diagnostics and Therapy of Inflammation Processes) at the University of Erlangen-Nuremberg, the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 466), the Federal Ministry of Education and Research (BMBF) and the Wilhelm Sander-Stiftung.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieser, C., Stumpf, D., Grillhösl, C. et al. Regulated and constitutive expression of anti-inflammatory cytokines by nontransforming herpesvirus saimiri vectors. Gene Ther 12, 395–406 (2005). https://doi.org/10.1038/sj.gt.3302424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302424

Keywords

This article is cited by

Search

Quick links