Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Adenoviral clostridial light chain gene-based synaptic inhibition through neuronal synaptobrevin elimination

A Corrigendum to this article was published on 06 January 2005

Abstract

Clostridial neurotoxins have assumed increasing importance in clinical application. The toxin's light chain component (LC) inhibits synaptic transmission by digesting vesicle-docking proteins without directly altering neuronal health. To study the properties of LC gene expression in the nervous system, an adenoviral vector containing the LC of tetanus toxin (AdLC) was constructed. LC expressed in differentiated neuronal PC12 cells was shown to induce time- and concentration-dependent digestion of mouse brain synaptobrevin in vitro as compared to control transgene products. LC gene expression in the rat lumbar spinal cord disrupted hindlimb sensorimotor function in comparison to control vectors as measured by the Basso–Beattie–Bresnahan (BBB) scale (P<0.001) and rotarod assay (P<0.003). Evoked electromyography (EMG) showed increased stimulus threshold and decreased response current amplitude in LC gene-transferred rats. At the peak of functional impairment, neither neuronal TUNEL staining nor reduced motor neuron density could be detected. Spontaneous functional recovery was observed to parallel the cessation of LC gene expression. These results suggest that light chain gene delivery within the nervous system may provide a nondestructive means for focused neural inhibition to treat a variety of disorders related to excessive synaptic activity, and prove useful for the study of neural circuitry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yamamoto M et al. Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain. J Neurosci 2003; 23: 6759–6767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aoki K, Guyer B . Botulinum toxin type a and other botulinum toxin serotypes: a comparative review of biochemical and pharmacological actions. Eur J Neurol 2001; 8 (Suppl 5): 21–29.

    Article  PubMed  Google Scholar 

  3. Das T, Park D . Botulinum toxin in treating spasticity. Br J Clin Pract 1989; 43: 401–403.

    CAS  PubMed  Google Scholar 

  4. Simpson D et al. Botulinum toxin type a in the treatment of upper extremity spasticity: a randomized, double-blind, placebo-controlled trial. Neurology 1996; 46: 1306–1310.

    Article  CAS  PubMed  Google Scholar 

  5. Heckmann M et al. Botulinum toxin a for axillary hyperhidrosis (excessive sweating). N Engl J Med 2001; 344: 488–493.

    Article  CAS  PubMed  Google Scholar 

  6. Kolbasnik J et al. Long-term efficacy of botulinum toxin in classical achalasia: a prospective study. Am J Gastroenterol 1999; 94: 3434–3439.

    Article  CAS  PubMed  Google Scholar 

  7. Schurch B et al. Botulinum-a toxin as a treatment of detrusor-sphincter dyssynergia: a prospective study in 24 spinal cord injury patients. J Urol 1996; 155: 1023–1029.

    Article  CAS  PubMed  Google Scholar 

  8. Rollnik J et al. Treatment of tension-type headache with botulinum toxin type a: a double-blind, placebo-controlled study. Headache 2000; 40: 300–305.

    Article  CAS  PubMed  Google Scholar 

  9. Blitzer A, Binder W . Cosmetic uses of botulinum neurotoxin type a: and overview. Arch Facial Plast Surg 2002; 4: 214–220.

    Article  PubMed  Google Scholar 

  10. Hanna P, Jankovic J . Mouse bioassay versus Western blot assay for botulinum toxin antibodies: correlation with clinical response. Neurology 1998; 50: 1624–1629.

    Article  CAS  PubMed  Google Scholar 

  11. Mogilner A, Rezai A . Brain stimulation: history, current clinical application, and future prospects. Acta Neurochir 2003; 87: 115–120.

    CAS  Google Scholar 

  12. Noordmans A et al. Adeno-associated viral glutamate decarboxylase expression in the lateral nucleus of the rat hypothalamus reduces feeding behavior. Gene Therapy 2004; 11: 797–804.

    Article  CAS  PubMed  Google Scholar 

  13. Luo J et al. Subthalamic gad gene therapy in a Parkinson's disease rat model. Science 2002; 298: 425–429.

    Article  CAS  PubMed  Google Scholar 

  14. During M et al. Subthalamic gad gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene Ther 2001; 12: 1589–1591.

    CAS  PubMed  Google Scholar 

  15. Niemann H . Molecular biology of clostridial neurotoxins. In: Alouf JE, Freer JH (ed). Sourcebook of Bacterial Protein Toxins. Academic Press: London, 1991, pp 303–348.

    Google Scholar 

  16. Schantz E, Johnson E . Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev 1992; 56: 80–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schiavo G et al. Tetanus and botulinum-b neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992; 359: 832–835.

    Article  CAS  PubMed  Google Scholar 

  18. Rossetto O et al. Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon 2001; 39: 27–41.

    Article  CAS  PubMed  Google Scholar 

  19. Humeau Y et al. How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 2000; 82: 427–446.

    Article  CAS  PubMed  Google Scholar 

  20. Pearce L et al. Pharmacologic characterization of botulinum toxin for basic science and medicine. Toxicon 1997; 35: 1373–1412.

    Article  CAS  PubMed  Google Scholar 

  21. Tonello F et al. Recombinant and truncated tetanus neurotoxin light chain: cloning, expression, purification, and proteolytic activity. Protein Expr Purif 1999; 15: 221–227.

    Article  CAS  PubMed  Google Scholar 

  22. Paxinos G, Watson C . Rat Brain in Stereotaxic Coordinates. Academic Press Incorporated: New York, 1998, p 69.

    Google Scholar 

  23. Boulis N et al. Adenoviral nerve growth factor and b-galactosidase transfer to spinal cord: a behavioral and histological analysis. J Neurosurg 1999a; 90: 99–108.

    CAS  PubMed  Google Scholar 

  24. Bromberg M, Waring W, Sanders P . Pattern of denervation in clinically uninvolved limbs in patients with prior poliomyelitis. Electromyography Clin Neurophysiol 1996; 36: 107–111.

    CAS  Google Scholar 

  25. Yuen E, Olney R . Longitudinal study of fiber density and motor unit number estimate in patients with amyotrophic lateral sclerosis. Neurology 1997; 49: 573–578.

    Article  CAS  PubMed  Google Scholar 

  26. Hsu S, Groleau G . Tetanus in the emergency department: a current review. J Emerg Med 2001; 20: 357–365.

    Article  CAS  PubMed  Google Scholar 

  27. Cherington M . Clinical spectrum of botulism. Muscle Nerve 1998; 21: 701–710.

    Article  CAS  PubMed  Google Scholar 

  28. Mauriello JJ et al. Treatment choices of 119 patients with hemifacial spasm over 11 years. Clin Neurol Neurosurg 1996; 98: 213–216.

    Article  PubMed  Google Scholar 

  29. Eleopra R et al. Botulinum neurotoxin serotypes a and c do not affect motor units survival in humans: an electrophysiological study by motor units counting. Clin Neurophysiol 2002; 113: 1258–1264.

    Article  CAS  PubMed  Google Scholar 

  30. Brooks V, Curtis D, Eccles J . Mode of action of tetanus toxin. Nature 1955; 175: 120–121.

    Article  CAS  PubMed  Google Scholar 

  31. Benecke R et al. Tetanus toxin induced actions on spinal renshaw cells in ia-inhibitory interneurones during development of local tetanus in the cat. Exp Brain Res 1977; 27: 271–286.

    CAS  PubMed  Google Scholar 

  32. Jefferys J, Whittington M . Review of the role of inhibitory neurons in chronic epileptic foci induced by intracerebral tetanus toxin. Epilepsy Res 1996; 26: 59–66.

    Article  CAS  PubMed  Google Scholar 

  33. Bhatia A . Uses of botulinum toxin injection in medicine today. BMJ 2000; 320: 161–165.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mazarakis N et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 2001; 10: 2109–2121.

    Article  CAS  PubMed  Google Scholar 

  35. Boulis N et al. Adeno-associated viral vector gene expression in the adult rat spinal cord following remote vector delivery. Neurobio Dis 2003; 14: 531–541.

    Article  Google Scholar 

  36. Kaspar B et al. Retrograde viral delivery of igf-1 prolongs survival in a mouse als model. Science 2003; 301: 839–842.

    Article  CAS  PubMed  Google Scholar 

  37. Byrnes AP, Maclaren RE, Charlton HM . Immunological instability of persistent adenovirus vectors in the brain: peripheral exposure to vector leads to renewed inflamation, reduced gene expression, and demyelination. J Neurosci 1996; 16: 3045–3055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kordower J et al. Neurodegeneration prevented by lentiviral vector delivery of gdnf in primate models of Parkinson's disease. Science 2000; 290: 767–773.

    Article  CAS  PubMed  Google Scholar 

  39. Gildenberg P . The history of surgery for movement disorders. Neurosurg Clin N Am 1998; 9: 283–293.

    Article  CAS  PubMed  Google Scholar 

  40. Benabid A et al. Acute and long-term effects of subthalamic nucleus stimulation in Parkinson's disease. Stereotact Funct Neurosurg 1994; 62: 76–84.

    Article  CAS  PubMed  Google Scholar 

  41. Levy R et al. Lidocaine and muscimol microinjections insubthalamic nucleus reverse Parkinsonian symptoms. Brain 2001; 124: 2105–2118.

    Article  CAS  PubMed  Google Scholar 

  42. Pahapill P et al. Tremor arrest with thalamic microinjections of muscimol in patients with essential tremor. Ann Neurol 1999; 46: 249–252.

    Article  CAS  PubMed  Google Scholar 

  43. Rothman J . The protein machinery of vesicle budding and fusion. Protein Sci 1996; 5: 185–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krishnaney A et al. Adenoviral light chain gene expression in the brainstem induces specific motor inhibition. Mol Ther 2004; 9: S19.

    Google Scholar 

  45. Montecucco C . How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 1986; 11: 315–317.

    Article  Google Scholar 

  46. Hardy S et al. Construction of adenovirus vectors through cre-lox recombination. J Virol 1997; 71: 1842–1849.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Graham F, Prevec L . Methods for construction of adenovirus vectors. Mol Biotechnol 1995; 3: 207–220.

    Article  CAS  PubMed  Google Scholar 

  48. Acsadi G et al. Increased survival and function of sod1 mice after glial cell-derived neurotrophic factor gene therapy. Hum Gene Ther 2002; 13: 1047–1059.

    Article  CAS  PubMed  Google Scholar 

  49. Basso D, Beattie M, Bresnahan J . A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995; 12: 1–21.

    Article  CAS  PubMed  Google Scholar 

  50. Detrait E et al. Reporter gene transfer induces apoptosis in primary cortical neurons. Mol Ther 2002; 5: 723–730.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Thomas Binz, PhD of the Medizinische Hochschule, Hannover, Germany for providing anti-LC antibodies and Sean Sweeney, PhD of the University of California, San Francisco for providing plasmid DNA. We also thank Dr Michael Imperiale of the University of Michigan for providing the adenovirus vector. This work was supported by the National Institutes of Health KO8 Grant NS43305, the Amyotrophic Lateral Sclerosis Association, and the Christopher Reeves Paralysis Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, Q., Tanase, D., Liu, J. et al. Adenoviral clostridial light chain gene-based synaptic inhibition through neuronal synaptobrevin elimination. Gene Ther 12, 108–119 (2005). https://doi.org/10.1038/sj.gt.3302400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302400

Keywords

This article is cited by

Search

Quick links