Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Stable polyplexes based on arginine-containing oligopeptides for in vivo gene delivery

Abstract

In this study, we investigated to what extent the stability and transduction capacity of polyplexed DNA can be improved by optimizing the condensing peptide sequence. We have synthesized a small library of cationic peptides, at which the lysine/arginine ratio and the cation charge were varied. All peptides were able to compact DNA, at which polyplexes of short lysine-rich sequences were considerably larger than those of elongated or arginine-rich peptides (GM102 and GM202). In addition, the arginine-rich peptides GM102 and GM202 rendered the polyplexes resistant to plasma incubation or DNase I-mediated digestion. While all peptides were found to improve the transfection efficiency in HepG2 cells, only the GM102- and GM202-derived polyplexes could be specifically targeted to HepG2 cells by incorporation of a ligand-derivatized YKAK8WK peptide. We propose that GM102 and GM202 combine the advantage of small condensing peptides to give small-sized polyplexes with the superior stability of condensing polymers, which makes GM102 and GM202 excellent candidates for future in vivo gene therapy studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Li B et al. Lyophilization of cationic lipid–protamine–DNA (LPD) complexes. J Pharm Sci 2000; 89: 355–364.

    Article  CAS  PubMed  Google Scholar 

  2. Mahato RI . Non-viral peptide-based approaches to gene delivery. J Drug Target 1999; 7: 249–268.

    Article  CAS  PubMed  Google Scholar 

  3. Young JL, Dean DA . Nonviral gene transfer strategies for the vasculature. Microcirculation 2002; 9: 35–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wolschek MF et al. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology 2002; 36: 1106–1114.

    Article  CAS  PubMed  Google Scholar 

  5. Armeanu S et al. Optimization of nonviral gene transfer of vascular smooth muscle cells in vitro and in vivo. Mol Ther 2000; 1: 366–375.

    Article  CAS  PubMed  Google Scholar 

  6. Domashenko A, Gupta S, Cotsarelis G . Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat Biotechnol 2000; 18: 420–423.

    Article  CAS  PubMed  Google Scholar 

  7. Felgner PL et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84: 7413–7417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mahato RI, Kawabata K, Takakura Y, Hashida M . In vivo disposition characteristics of plasmid DNA complexed with cationic liposomes. J Drug Target 1995; 3: 149–157.

    Article  CAS  PubMed  Google Scholar 

  9. Wu CH, Wilson JM, Wu GY . Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo. J Biol Chem 1989; 264: 16985–16987.

    CAS  PubMed  Google Scholar 

  10. Wilson JM et al. Retrovirus-mediated transduction of adult hepatocytes. Proc Natl Acad Sci USA 1988; 85: 3014–3018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wagner E et al. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin–polylysine–DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc Natl Acad Sci USA 1992; 89: 7934–7938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gottschalk S et al. A novel DNA–peptide complex for efficient gene transfer and expression in mammalian cells. Gene Therapy 1996; 3: 48–57.

    Google Scholar 

  13. Van Rossenberg SM et al. Targeted lysosome disruptive elements for improvement of parenchymal liver cell specific gene delivery. J Biol Chem 2002; 277: 45803–45810.

    Article  CAS  PubMed  Google Scholar 

  14. Navarro-Quiroga I et al. Improved neurotensin-vector-mediated gene transfer by the coupling of hemagglutinin HA2 fusogenic peptide and Vp1 SV40 nuclear localization signal. Brain Res Mol Brain Res 2002; 105: 86–97.

    Article  CAS  PubMed  Google Scholar 

  15. Merwin JR et al. Targeted delivery of DNA using YEE(GalNAcAH)3, a synthetic glycopeptide ligand for the asialoglycoprotein receptor. Bioconjug Chem 1994; 5: 612–620.

    Article  CAS  PubMed  Google Scholar 

  16. Schaffer DV, Lauffenburger DA . Targeted synthetic gene delivery vectors. Curr Opin Mol Ther 2000; 2: 155–161.

    CAS  PubMed  Google Scholar 

  17. Kircheis R et al. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Therapy 1997; 4: 409–418.

    Article  CAS  PubMed  Google Scholar 

  18. Boussif O et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995; 92: 7297–7301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guillem VM et al. Targeted oligonucleotide delivery in human lymphoma cell lines using a polyethyleneimine based immunopolyplex. J Control Release 2002; 83: 133–146.

    Article  CAS  PubMed  Google Scholar 

  20. Haensler J, Szoka Jr FC . Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 1993; 4: 372–379.

    Article  CAS  PubMed  Google Scholar 

  21. Plank C, Mechtler K, Szoka Jr FC, Wagner E . Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther 1996; 7: 1437–1446.

    Article  CAS  PubMed  Google Scholar 

  22. Sparrow JT et al. Synthetic peptide-based DNA complexes for nonviral gene delivery. Adv Drug Deliv Rev 1998; 30: 115–131.

    Article  CAS  PubMed  Google Scholar 

  23. McKenzie DL, Collard WT, Rice KG . Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides. J Pept Res 1999; 54: 311–318.

    Article  CAS  PubMed  Google Scholar 

  24. Wadhwa MS et al. Peptide-mediated gene delivery: influence of peptide structure on gene expression. Bioconjug Chem 1997; 8: 81–88.

    Article  CAS  PubMed  Google Scholar 

  25. Niidome T et al. Gene transfer into hepatoma cells mediated by galactose-modified alpha-helical peptides. Biomaterials 2000; 21: 1811–1819.

    Article  CAS  PubMed  Google Scholar 

  26. Wadhwa MS, Knoell DL, Young AP, Rice KG . Targeted gene delivery with a low molecular weight glycopeptide carrier. Bioconjug Chem 1995; 6: 283–291.

    Article  CAS  PubMed  Google Scholar 

  27. Zou Y, Zong G, Ling YH, Perez-Soler R . Development of cationic liposome formulations for intratracheal gene therapy of early lung cancer. Cancer Gene Ther 2000; 7: 683–696.

    Article  CAS  PubMed  Google Scholar 

  28. Wolfert MA, Seymour LW . Atomic force microscopic analysis of the influence of the molecular weight of poly(L)lysine on the size of polyelectrolyte complexes formed with DNA. Gene Therapy 1996; 3: 269–273.

    CAS  PubMed  Google Scholar 

  29. Lacey Jr JC, Pruitt KM . Drug–biomolecule interactions: interactions of mononucleotides and polybasic amino acids. J Pharm Sci 1975; 64: 473–477.

    Article  CAS  PubMed  Google Scholar 

  30. Plank C, Tang MX, Wolfe AR, Szoka Jr FC . Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum Gene Ther 1999; 10: 319–332.

    Article  CAS  PubMed  Google Scholar 

  31. Dash PR et al. Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Therapy 1999; 6: 643–650.

    Article  CAS  PubMed  Google Scholar 

  32. Kalderon D, Roberts BL, Richardson WD, Smith AE . A short amino acid sequence able to specify nuclear location. Cell 1984; 39: 499–509.

    Article  CAS  PubMed  Google Scholar 

  33. Lanford RE, Kanda P, Kennedy RC . Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 1986; 46: 575–582.

    Article  CAS  PubMed  Google Scholar 

  34. Perales JC et al. Biochemical and functional characterization of DNA complexes capable of targeting genes to hepatocytes via the asialoglycoprotein receptor. J Biol Chem 1997; 272: 7398–7407.

    Article  CAS  PubMed  Google Scholar 

  35. Chiou HC et al. Enhanced resistance to nuclease degradation of nucleic acids complexed to asialoglycoprotein–polylysine carriers. Nucleic Acids Res 1994; 22: 5439–5446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cristiano RJ, Smith LC, Woo SL . Hepatic gene therapy: adenovirus enhancement of receptor-mediated gene delivery and expression in primary hepatocytes. Proc Natl Acad Sci USA 1993; 90: 2122–2126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oh YK et al. Polyethylenimine-mediated cellular uptake, nucleus trafficking and expression of cytokine plasmid DNA. Gene Therapy 2002; 9: 1627–1632.

    Article  CAS  PubMed  Google Scholar 

  38. Gausepohl H, Boulin C, Kraft M, Frank RW . Automated multiple peptide synthesis. Pept Res 1992; 5: 315–320.

    CAS  PubMed  Google Scholar 

  39. Sliedregt LA et al. Design and synthesis of a multivalent homing device for targeting to murine CD22. Bioorg Med Chem 2001; 9: 85–97.

    Article  CAS  PubMed  Google Scholar 

  40. Commerford SL . In vitro iodination of nucleic acids. Methods Enzymol 1980; 70: 247–252.

    Article  CAS  PubMed  Google Scholar 

  41. Cotten M, Wagner E, Birnstiel ML . Receptor-mediated transport of DNA into eukaryotic cells. Methods Enzymol 1993; 217: 217618–217644.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Netherlands Foundation for Scientific Research (NWO, project 901-01-096), the Netherlands Heart Foundation (project M93 001) and the Chemical Sciences/Foundation of Technical Sciences (CW/STW, project 349-4779).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Rossenberg, S., van Keulen, A., Drijfhout, JW. et al. Stable polyplexes based on arginine-containing oligopeptides for in vivo gene delivery. Gene Ther 11, 457–464 (2004). https://doi.org/10.1038/sj.gt.3302183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302183

Keywords

This article is cited by

Search

Quick links