Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Acquired Diseases
  • Published:

Glioma/glioblastoma-specific adenoviral gene expression using the nestin gene regulator

Abstract

For glioma- and glioblastoma-specific gene expression, we utilized a nestin regulatory element whose activity was evaluated by the reporter gene lacZ. Nestin is a 38-kDa intermediate filament protein, and is expressed specifically in the neuroepithelial stem cells. Nestin is detected in gliomas and glioblastomas, but not in normal brain tissue. We constructed a nestin gene regulator by placing nestin's second intron before the 5′ upstream region (2iNP). To obtain enhanced expression of this tissue-specific regulator, we utilized the adenovirus double-infection method with a Cre-loxP on/off switching system. We constructed a ‘regulator’ vector, Ax2iNPNCre, which expresses Cre recombinase under the control of the nestin regulatory element, 2iNP. A ‘reporter’ vector, AxCALNLNZK, expresses lacZ under the control of a strong CAG promoter when the stuffer sequence has been removed by Cre recombinase at a pair of loxP sites. We used seven human glioma/glioblastoma cell lines: U251, KG-1C, NGM5, U87 MG, LN-Z308, NP-2 and T98G. Of these, nestin was expressed highly in U251 and KG-1C, less in NGM5, and undetectably in the other four lines. With the use of the two adenovirus vectors, we found X-gal staining and high nestin regulator-promoted β-galactosidase activities in four of the seven glioma/glioblastoma cell lines. Staining was strong in U251, KG-1C and NGM5, and less in U87 MG. LacZ expression was nearly undetectable in the non-glioma cell line, HeLa, but a little in COS-7. The adenovirus double-infection method, which uses a nestin regulator, is applicable for glioma/glioblastoma-specific expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mahaley MS et al. National survey of patterns of care for brain tumor patients J Neurosurg 1989 71: 826–836

    Article  PubMed  Google Scholar 

  2. Culver KW et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors Science 1992 256: 1550–1552

    Article  CAS  PubMed  Google Scholar 

  3. Ram Z et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells Nature Med 1997 3: 1354–1361

    Article  CAS  PubMed  Google Scholar 

  4. Klatzmann D et al. A Phase I/II study of herpes simplex virus type 1 thymidine kinase ‘suicide’ gene therapy for recurrent glioblastoma Hum Gene Ther 1998 9: 2595–2604

    CAS  PubMed  Google Scholar 

  5. Brody SL et al. Direct in vivo gene transfer and expression in malignant cells using adenovirus vectors Hum Gene Ther 1994 5: 437–447

    Article  CAS  PubMed  Google Scholar 

  6. Wilson JM . Adenoviruses as gene-delivery vehicles New Engl J Med 1996 334: 1185–1187

    Article  CAS  PubMed  Google Scholar 

  7. Chen SH et al. Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo Proc Natl Acad Sci USA 1994 91: 3054–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miyao Y et al. Selective expression of foreign genes in glioma cells: use of the mouse myelin basic protein gene promoter to direct toxic gene expression J Neurosci Res 1993 36: 472–479

    Article  CAS  PubMed  Google Scholar 

  9. Chen J et al. A glial-specific, repressible, adenovirus vector for brain tumor gene therapy Cancer Res 1998 58: 3504–3507

    CAS  PubMed  Google Scholar 

  10. Vandier D et al. Selective killing of glioma cell lines using an astrocyte-specific expression of the herpes simplex virus-thymidine kinase gene Cancer Res 1998 58: 4577–4580

    CAS  PubMed  Google Scholar 

  11. Eng LF . Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes J Neuroimmunol 1985 8: 203–214

    Article  CAS  PubMed  Google Scholar 

  12. Besnard F et al. Multiple interacting sites regulate astrocyte-specific transcription of the human gene for glial fibrillary acidic protein J Biol Chem 1991 266: 18877–18883

    CAS  PubMed  Google Scholar 

  13. Lendahl U, Zimmermann LB, McKay DG . CNS stem cells express a new class of intermediate filament protein Cell 1990 60: 585–595

    Article  CAS  PubMed  Google Scholar 

  14. Zimmerman L et al. Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors Neuron 1994 12: 11–24

    Article  CAS  PubMed  Google Scholar 

  15. Dahlstrand J, Collins VP, Lendahl U . Expression of the class V1 intermediate filament nestin in human central nervous system tumors Cancer Res 1992 52: 5334–5341

    CAS  PubMed  Google Scholar 

  16. Lothian C, Lendahl U . An evolutionary conserved region in the second intron of the human nestin gene directs gene expression to CNS progenitor cells and to early neural crest cells Eur J Neurosci 1997 9: 452–462

    Article  CAS  PubMed  Google Scholar 

  17. Kanegae Y et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase Nucleic Acids Res 1995 23: 3816–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sato Y et al. Enhanced and specific gene expression via tissue-specific production of Cre recombinase using denovirus vector Biochem Biophys Res Commun 1998 244: 455–462

    Article  CAS  PubMed  Google Scholar 

  19. Niwa H, Yamamura K-i, Miyazaki J-i . Efficient selection for high-expression transfectants with a novel eukaryotic vector Gene 1991 108: 193–200

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka T et al. Adenovirus-mediated produrg gene therapy for carcinoembryonic antigen-producing human gastric carcinoma cells in vitro Cancer Res 1996 56: 1341–1345

    CAS  PubMed  Google Scholar 

  21. Kanai F et al. In vivo gene therapy for α-fetoprotein-producing hepatocellular carcinoma by adenovirus-mediated transfer of cytosine deaminase gene Cancer Res 1997 57: 461–465

    CAS  PubMed  Google Scholar 

  22. Pillard F et al. Suicide gene against brain tumors Hum Gene Ther 1998 9: 3–4

    Google Scholar 

  23. Miller CR et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer Cancer Res 1998 58: 5738–5748

    CAS  PubMed  Google Scholar 

  24. Yoshida Y et al. Generation of fiber-mutant recombinant adenoviruses for gene therapy of malignant glioma Hum Gene Ther 1998 9: 2503–2515

    Article  CAS  PubMed  Google Scholar 

  25. Laske DW, Youle RJ, Oldfield EH . Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors Nature Med 1997 3: 1362–1368

    Article  CAS  PubMed  Google Scholar 

  26. Gomez-Manzano C et al. Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis Cancer Res 1996 56: 694–699

    CAS  PubMed  Google Scholar 

  27. Kondo S et al. FADD gene therapy for malignant gliomas in vitro and in vivo Hum Gene Ther 1998 9: 1599–1608

    Article  CAS  PubMed  Google Scholar 

  28. Fueyo J et al. Overexpression of E2F-1 in glioma triggers apoptosis and suppresses tumor growth in vitro and in vivo Nature Med 1998 4: 685–690

    Article  CAS  PubMed  Google Scholar 

  29. Miyake M et al. Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome Proc Natl Acad Sci USA 1996 93: 1320–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Precious B et al. Growth, purification and titration of adenoviruses. In: Mahy BWJ (ed) Virology. A Practical Approach IRI Press: Oxford 1985 pp 193–205

    Google Scholar 

  31. Kanegae Y, Makimura M, Saito I . A simple and efficient method for purification of infectious recombinant adenovirus Jpn J Med Sci Biol 1994 47: 157–166

    Article  CAS  PubMed  Google Scholar 

  32. Hashimoto M et al. A neural cell-type-specific expression system using recombinant adenovirus vectors Hum Gene Ther 1996 7: 149–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by grants-in-aid from the Ministry of Education, Science, Sports and Culture. We are grateful to Dr I Saito, Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, for providing a cosmid vector pAxAwNCre and a lacZ expression adenovirus vector AxCALacZ.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurihara, H., Zama, A., Tamura, M. et al. Glioma/glioblastoma-specific adenoviral gene expression using the nestin gene regulator. Gene Ther 7, 686–693 (2000). https://doi.org/10.1038/sj.gt.3301129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301129

Keywords

This article is cited by

Search

Quick links