Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Poly-L-lysine improves gene transfer with adenovirus formulated in PLGA microspheres

Abstract

In vivo gene transfer with recombinant adenovirus vectors can be hindered by the immunogenicity of the adenovirus capsid proteins. Previous work showed that formulation of the vector with biodegradable polymers such as poly-lactic-glycolic acid (PLGA), polyethylene glycol (PEG), or lipids, may shield the virus from inhibition by neutralizing antibodies. Formulation of adenovirus in PLGA microspheres also allowed for extended release in vitro. In experiments described here, we found that the surfactant used in the formation of the primary emulsion could significantly improve the overall yield of virus released. We also tested the effects of adding poly-L-lysine to adenovirus before encapsulation with PLGA. Our results show that although PLL did not effect the yield of virus encapsulated or released from the microspheres, it significantly improved the efficiency of gene transfer after release from the polymer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Crystal RG et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis Nat Genet 1994 8: 42–51

    Article  CAS  PubMed  Google Scholar 

  2. Zabner J et al. Safety and efficacy of repetitive adenovirus-mediated transfer of CFTR cDNA to airway epithelia of primates and cotton rats Nat Genet 1994 6: 75–83

    Article  CAS  PubMed  Google Scholar 

  3. Knowles MR et al. A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis New Engl J Med 1995 333: 823–831

    Article  CAS  PubMed  Google Scholar 

  4. Eck SL et al. Treatment of advanced CNS malignancies with the recombinant adenovirus H5.010RSVTK: a phase I trial Hum Gene Ther 1996 7: 1465–1482

    Article  CAS  PubMed  Google Scholar 

  5. Gahery-Segard H et al. Phase I trial of recombinant adenovirus gene transfer in lung cancer. Longitudinal study of the immune responses to transgene and viral products J Clin Invest 1997 100: 2218–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Puumalainen AM et al. Beta-galactosidase gene transfer to human malignant glioma in vivo using replication-deficient retroviruses and adenoviruses Hum Gene Ther 1998 9: 1769–1774

    Article  CAS  PubMed  Google Scholar 

  7. Lieber A, He CY, Kirillova I, Kay MA . Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo J Virol 1996 70: 8944–8960

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mitani K, Graham FL, Caskey CT, Kochanek S . Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector Proc Natl Acad Sci USA 1995 92: 3854–3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morsy MA et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene Proc Natl Acad Sci USA 1998 95: 7866–7871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schiedner G et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity Nat Genet 1998 18: 180–183

    Article  CAS  PubMed  Google Scholar 

  11. Horwitz MS . Adenoviridae and their replication. In: Fields BN, Knipe DM (eds) Fundamental Virology Raven Press: New York 1991 771–813

    Google Scholar 

  12. Yang Y, Greenough K, Wilson JM . Transient immune blockade prevents formation of neutralizing antibody to recombinant adenovirus and allows repeated gene transfer to mouse liver Gene Therapy 1996 3: 412–420

    CAS  PubMed  Google Scholar 

  13. Scaria A et al. Antibody to CD40 ligand inhibits both humoral and cellular immune responses to adenoviral vectors and facilitates repeated administration to mouse airway Gene Therapy 1997 4: 611–617

    Article  CAS  PubMed  Google Scholar 

  14. Stein CS Pemberton JL, van Rooijen N, Davidson BI . Effects of macrophage depletion and anti-CD40 ligand on transgene expression and redosing with recombinant adenovirus Gene Therapy 1998 5: 431–439

    Article  PubMed  Google Scholar 

  15. Wilson CB et al. Transient inhibition of CD28 and CD40 ligand interactions prolongs adenovirus-mediated transgene expression in the lung and facilitates expression after secondary vector administration J Virol 1998 72: 7542–7550

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Beer SJ et al. Poly (lactic-glycolic) acid co-polymer encapsulation of recombinant adenovirus reduces immunogenicity in vivo Gene Therapy 1998 5: 740–746

    Article  CAS  PubMed  Google Scholar 

  17. Chillon M Lee JH, Fasbender A, Welsh MJ . Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro Gene Therapy 1998 5: 995–1002

    Article  Google Scholar 

  18. Gall J, Kass-Eisler A, Leinwand L, Falck-Pedersen E . Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes J Virol 1996 70: 2116–2123

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cleland JL . Protein delivery from biodegradable microspheres Pharm Biotechnol 1997 10: 1–43

    CAS  PubMed  Google Scholar 

  20. Cohen S et al. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres Pharm Res 1991 8: 713–720

    Article  CAS  PubMed  Google Scholar 

  21. Gref R et al. Biodegradable long-circulating polymeric nanospheres Science 1994 263: 1600–1603

    Article  CAS  PubMed  Google Scholar 

  22. Cleland JL et al. The stability of recombinant human growth hormone in poly(lactic-co-glycolic acid) (PLGA) microspheres Pharm Res 1997 14: 420–425

    Article  CAS  PubMed  Google Scholar 

  23. Mathiowitz E et al. Biologically erodable microspheres as potential oral drug delivery systems Nature 1997 386: 410–414

    Article  CAS  PubMed  Google Scholar 

  24. Igartua M et al. Influence of formulation variables on the in vitro release of albumin from biodegradable microparticulate systems J Microencapsul 1997 14: 349–356

    Article  CAS  PubMed  Google Scholar 

  25. Tabata Y, Gutta S, Langer R . Controlled delivery systems for proteins using polyanhydride microspheres Pharm Res 1993 10: 487–496

    Article  CAS  PubMed  Google Scholar 

  26. Coombes AG, Yeh MK, Lavelle EC, Davis SS . The control of protein release from poly(DL-lactide co-glycolide) microparticles by variation of the external aqueous phase surfactant in the water-in oil-in water method J Control Rel 1998 52: 311–320

    Article  CAS  Google Scholar 

  27. Zografi G . Interfacial phenomena. In: Osol A (ed) Remington’s Pharmaceutical Sciences Mack Publishing: Easton, PA 1975 285–298

    Google Scholar 

  28. Nihant N et al. Polylactide microparticles prepared by double emulsion/evaporation technique. I. Effect of primary emulsion stability Pharm Res 1994 11: 1479–1484

    Article  CAS  PubMed  Google Scholar 

  29. Johnson OL et al. The stabilization and encapsulation of human growth hormone into biodegradable microspheres Pharm Res 1997 14: 730–735

    Article  CAS  PubMed  Google Scholar 

  30. Wang YM, Sato H, Adachi I, Horikoshi I . Preparation and characterization of poly(lactic-co-glycolic acid) microspheres for targeted delivery of a novel anticancer agent, taxol Chem Pharm Bull 1996 44: 1935–1940

    Article  CAS  Google Scholar 

  31. Fasbender A et al. Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo J Biol Chem 1997 272: 6479–6489

    Article  CAS  PubMed  Google Scholar 

  32. Graham FL, van der Eb AJ . A new technique for the assay of infectivity of human adenovirus 5 DNA Virology 1973 52: 456–467

    Article  CAS  PubMed  Google Scholar 

  33. Lemarchand P et al. Adenovirus-mediated transfer of a recombinant human alpha 1-antitrypsin cDNA to human endothelial cells Proc Natl Acad Sci USA 1992 89: 6482–6486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pekarek KJ, Jacob JS, Mathiowitz E . Double-walled polymer microspheres for controlled drug release Nature 1994 367: 258–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Iowa Gene Transfer Vector Core supported, in part, by the Carver Foundation. This work was supported in part by the NIH (R43-CA67357). CBM is the recipient of a predoctoral fellowship from the Iowa Affiliate, American Heart Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthews, C., Jenkins, G., Hilfinger, J. et al. Poly-L-lysine improves gene transfer with adenovirus formulated in PLGA microspheres. Gene Ther 6, 1558–1564 (1999). https://doi.org/10.1038/sj.gt.3300978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300978

Keywords

This article is cited by

Search

Quick links